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What I’ve proposed is that we have a panel of medical experts that are making determina-
tions about what protocols are appropriate for what diseases. There’s going to be some 
disagreement, but if there’s broad agreement that, in this situation the blue pill works better 
than the red pill, and it turns out the blue pills are half as expensive as the red pill, then we 
want to make sure that doctors and patients have that information available to them.  

President Barack Obama, 2009* 

*Interview with ABC News’ Dr. Timothy Johnson, July 15, 2009.
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been extensively reworked, with almost all coming from 
studies published in the twenty-first century. 

This book has its origins in 1973, when I was a post-
doctoral fellow. Many friends and colleagues came to me 
for advice and explanations about biostatistics. Since most 
of them had even less knowledge of statistics than I did, I 
tried to learn what I needed to help them. The need to 
develop quick and intuitive, yet correct, explanations of 
the various tests and procedures slowly evolved into a set 
of stock explanations and a two-hour slide show on com-
mon statistical errors in the biomedical literature and how 
to cope with them. The success of this slide show led many 
people to suggest that I expand it into an introductory 
book on biostatistics, which led to the first edition of 
Primer of Biostatistics in 1981.

As a result, this book is oriented as much to the indi-
vidual reader — whether he or she is a student, postdoc-
toral research fellow, professor, or practitioner — as to the 
student attending formal lectures.

This book can be used as a text at many levels. It has 
been the required text for the biostatistics portion of the 
epidemiology and biostatistics course required of medical 
students, covering the material in the first eight chapters 
in eight one-hour lectures. The book has also been used 
for a more abbreviated set of lectures on biostatistics (cov-
ering the first three chapters) given to our dental students. 
In addition, it has served me (and others) well in a one-
quarter four-unit course in which we cover the entire 
book in depth. This course meets for four lecture hours 
and has a one-hour problem session. It is attended by a 
wide variety of students, from undergraduates through 

I have always thought of myself as something of an out-
sider and troublemaker, so it is with some humility that I 
prepare the seventh edition of this book, 30 years after the 
first edition appeared. Then, as now, the book had an 
unusual perspective: that many papers in the medical lit-
erature contained avoidable errors. At the time, the pub-
lisher, McGraw-Hill, expressed concern that this 
“confrontational approach” would put off readers and 
hurt sales. They also worried that the book was not orga-
nized like a traditional statistics text.

Time has shown that the biomedical community was 
ready for such an approach and the book has achieved 
remarkable success. 

The nature of the problems with the medical literature, 
however, has evolved over time and this new edition 
reflects that evolution. Many journals now have formal 
statistical reviewers so the kinds of simple errors that used 
to dominate have been replaced with more subtle prob-
lems of biased samples and underpowered studies 
(although there are still more than enough inappropriate 
t tests to go around). Over time, this book has evolved to 
include more topics, such as power and sample size, more 
on multiple comparison procedures, relative risks and 
odds ratios, and survival analysis.

In this edition I actually pruned back the discussion of 
multiple comparison testing to focus on Bonferonni, 
Holm, and Holm-Sidak corrected tests for both paramet-
ric and nonparametric methods. 

At the same time, this is the most extensive revision 
done for a new edition since the book was first published. 
The book is now published in a larger, more open text 
format with more worked out examples. There are new 
brief introductions to higher order analysis of variance, 
multiple regression and logistic regression,* as well as 
expanded discussions of problems with study designs and 
more information on how to combine information from 
many different studies. The examples and problems have 

Preface

*These issues are treated in detail in a second book on the subject of 
multiple regression and analysis of variance, written with the same ap-
proach in Primer of Biostatistics. It is Glantz SA, Slinker BK. Primer of 
Applied Regression and Analysis of Variance, 2nd ed. New York: McGraw-
Hill; 2001.
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graduate students and postdoctoral fellows, as well as fac-
ulty members.

Because this book includes the technical material cov-
ered in any introductory statistics course, it is suitable as 
either the primary or the supplementary text for a general 
undergraduate introductory statistics course (which is 
essentially the level at which this material is taught in 
medical schools), especially for a teacher seeking a way to 
make statistics relevant to students majoring in the life 
sciences.

This book differs from other introductory texts on bio-
statistics in several ways, and it is these differences which 
seem to account for the book’s enduring popularity.

First, because inappropriate use of the t test to analyze 
multigroup studies continues to be a common error, prob-
ably because the t test is usually the first procedure pre-
sented in a statistics book that will yield the highly prized 
P value. Analysis of variance, if presented at all, is deferred 
to the end of the book to be ignored or rushed through at 
the end of the term. Since so much is published that prob-
ably should be analyzed with analysis of variance, and 
since analysis of variance is really the paradigm of all 
parametric statistical tests, I present it first, then discuss 
the t test as a special case.

Second, in keeping with the problems that I see in the 
literature, there is a discussion of multiple comparison 
testing.

Third, the book is organized around hypothesis test-
ing and estimation of the size of treatment effects, as 
opposed to the more traditional (and logical from a the-
ory of statistics perspective) organization that goes from 
one-sample to two-sample to general k-sample estima-
tion and hypotheses testing procedures. This approach 
goes directly to the kinds of problems one most com-
monly encounters when reading about or doing biomed-
ical research.

The examples are based mostly on interesting studies 
from the literature and are reasonably true to the original 
data. I have, however, taken some liberty in recreating the 

raw data to simplify the statistical problems (for example, 
making the sample sizes equal) so that I could focus on 
the important intuitive ideas behind the statistical proce-
dures rather than getting involved in the algebra and 
arithmetic. There are still some topics common in intro-
ductory texts that I leave out or treat implicitly. There is 
not an explicit discussion of probability calculus and 
expected values and I still blur the distinction between P 
and α.

As with any book, there are many people who deserve 
thanks. Julien Hoffman gave me the first really clear and 
practically oriented course in biostatistics, which allowed 
me to stay one step ahead of the people who came to me 
for expert help. Over the years, Virgina Ernster, Susan 
Sacks, Philip Wilkinson, Marion Nestle, Mary Giammona, 
Bryan Slinker, Jim Lightwood, Kristina Thayer, Joaquin 
Barnoya, Jennifer Ibrahim, and Sara Shain helped me find 
good examples to use in the text and as problems. Bart 
Harvey and Evelyn Schlenker were particularly gracious in 
offering suggestions and detailed feedback on the new 
material in this edition. I thank them all. Finally, I thank 
the many others who have used the book, both as students 
and as teachers of biostatistics, who took the time to write 
me questions, comments, and suggestions on how to 
improve it. I have done my best to heed their advice in 
preparing this seventh edition.

Many of the pictures in this book are direct descen-
dants of my original slides. In fact, as you read this book, 
you would do best to think of it as a slide show that has 
been set to print. Most people who attend my slide show 
leave more critical of what they read in the biomedical 
literature and people who have read earlier editions said 
that the book had a similar effect on them. Nothing could 
be more flattering or satisfying to me. I hope that this 
book will continue to make more people more critical and 
help improve the quality of the biomedical literature and, 
ultimately, the care of people.

Stanton A. Glantz
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1
Biostatistics and 
Clinical Practice

Because of the fact that medical care touches every-
one’s life in one way or another and because of the high 
stakes — financial and otherwise — for the individuals 
and organizations that provide these services, reforming 
the health care system has been a controversial and politi-
cally charged issue.

After over a year of increasingly partisan debate, in 
March 2010 the Democrats in Congress passed the Patient 
Protection and Affordable Care Act without a single 
Republican vote. On March 23, 2010, President Barack 
Obama signed the bill into law. 

While this law has many provisions, including requir-
ing people to have or purchase health insurance and 
imposing many regulations on the health insurance 
industry, it also recognizes that the current medical sys-
tem is unsustainable financially and includes several pro-
visions designed to get the costs of the medical system 
under control. (Indeed, one of the main facts driving the 
debate was the observation, from an ongoing research 
project at Dartmouth University, the Dartmouth Atlas of 
Health Care,* that 30% of the nation’s medical spending 
would be unnecessary if all regions of the United States 
the provided services at the level observed in low-spending 
regions that achieved that same equal quality.) The law 

*The research behind this statement, together with many other findings 
about geographical variations in medical services and health outcomes is 
available at www.dartmouthatlas.org.

Until the second quarter of the 20th century, medical 
treatment had little positive effect on when, or even 
whether, sick people recovered. With the discovery of ways 
to reverse the biochemical deficiencies that caused some 
diseases and the development of antibacterial drugs, it 
became possible to cure sick people. These early successes 
and the therapeutic optimism they engendered stimulated 
the biomedical research community to develop a host of 
more powerful agents to treat heart disease, cancer, neu-
rological disorders, and other ailments. These increasing 
opportunities for productive intervention as well as a fun-
damental restructuring of the market away from non-
profit health care providers to for-profit entities and the 
expansion of the pharmaceutical, medical device, and 
insurance industries that saw opportunities to make 
money providing medical services, together with increas-
ing expectations by the public, have led to spending an 
accelerating amount of money on medical services, reach-
ing $2.6 trillion and nearly one-fifth of the United States’ 
entire gross domestic product in 2011 (Fig. 1-1).

This situation has led to continuous calls for reform 
from a wide spectrum of stakeholders, from business lead-
ers who saw their costs skyrocketing, to labor leaders who 
saw health insurance costs putting downward pressure on 
wages, to advocates for the growing number of uninsured 
people who were simply priced out of the system, to polit-
ical decision makers who saw out-of-control costs of pro-
viding medical care through government programs such 
as Medicare and Medicaid, jeopardizing other important 
government services.

www.dartmouthatlas.org
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established a Patient-Centered Outcomes Research Insti-
tute to conduct comparative effectiveness research on the 
“relative health outcomes, clinical effectiveness, and 
appropriateness” of different medical treatments. The law 
also created task forces on Preventive Services and Com-
munity Preventive Services to develop, update, and dis-
seminate evidenced-based recommendations on the use 
of clinical and community prevention services.

These issues are, at their heart, statistical issues. 
Because of factors such as natural biological variability 
between individual patients and the placebo effect,* one 
usually cannot conclude that some therapy was beneficial 
on the basis of simple experience. Biostatistics provides 
the tools for turning clinical and laboratory experience 

into quantitative statements about whether and by how 
much a treatment or procedure affects a group of 
patients.

Hence, evidence collected and analyzed using biostatis-
tical methods can potentially affect not only how clini-
cians choose to practice their profession but what choices 
are open to them. Intelligent participation in these deci-
sions requires an understanding of biostatistical methods 
and models that will permit one to assess the quality of the 
evidence and the analysis of that evidence used to support 
one position or another.

Clinicians have not, by and large, participated in 
debates on these quantitative questions, probably because 
the issues appear too technical and seem to have little 
impact on their day-to-day activities. Clinicians need to 
be able to make more informed judgments about claims 
of medical efficacy so that they can participate more intel-
ligently in the debate on how to allocate health care 
resources. These judgments will be based, in large part, on 
statistical reasoning.

*The placebo effect is a positive response to therapy per se as opposed to 
the therapy’s specific effects. For example, about one-third of people 
given placebos in place of painkillers report experiencing relief. We will 
discuss the placebo effect in detail later in this book.
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FIGURE 1-1. (A) Total annual expenditures for medical services in the United States between 
1960 and 2010. (B) Expenditures for medical services as a percentage of the gross domestic 
product. (Source: Statistical Abstract of the United States, 2011. Washington, DC: US 
Department of Commerce, pp. 99.)
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  �WHAT DO STATISTICAL PROCEDURES 
TELL YOU?

Suppose researchers believe that administering some 
drug increases urine production in proportion to the 
dose and to study it they give different doses of the drug 
to five different people, plotting their urine production 
against the dose of drug. The resulting data, shown in 
Figure 1-2A, reveal a strong relationship between the 
drug dose and daily urine production in the five people 
who were studied. This result would probably lead the 
investigators to publish a paper stating that the drug was 
an effective diuretic.

The only statement that can be made with absolute 
certainty is that as the drug dose increased, so did urine 
production in the five people in the study. The real question 
of interest, however, is: How is the drug likely to affect all 
people who receive it? The assertion that the drug is effec-
tive requires a leap of faith from the limited experience, 
shown in Figure 1-2A, to all people.

Now, pretend that we knew how every person who 
would ever receive the drug would respond. Figure 1-2B 
shows this information. There is no systematic relation-
ship between the drug dose and urine production! The 
drug is not an effective diuretic.

How could we have been led so far astray? The dark 
points in Figure 1-2B represent the specific individuals 
who happened to be studied to obtain the results shown 
in Figure 1-2A. While they are all members of the popu-
lation of people we are interested in studying, the five 
specific individuals we happened to study, taken as a 
group, were not really representative of how the entire 
population of people responds to the drug.

Looking at Figure 1-2B should convince you that obtain-
ing such an unrepresentative sample of people, though 
possible, is not very probable. One set of statistical proce-
dures, called tests of hypotheses, permit you to estimate 
the likelihood of concluding that two things are related as  
Figure 1-2A suggests when the relationship is really due to 
bad luck in selecting people for study, and not a true effect 
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FIGURE 1-2. (A) Results of an experiment in which researchers administered five different 
doses of a drug to five different people and measured their daily urine production. Output 
increased as the dose of drug increased in these five people, suggesting that the drug is an 
effective diuretic in all people similar to those tested. (B) If the researchers had been able 
to administer the drug to all people and measure their daily urine output, it would have been 
clear that there is no relationship between the dose of drug and urine output. The five 
specific individuals who happened to be selected for the study in panel A are shown as 
shaded points. It is possible, but not likely, to obtain such an unrepresentative sample that 
leads one to believe that there is a relationship between the two variables when there is 
none. A set of statistical procedures called tests of hypotheses permits one to estimate  
the chance of getting such an unrepresentative sample.
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of the drug. In this example, one can estimate that such a 
sample of people will turn up in a study of the drug only 
about 5 times in 1000 when the drug actually has no effect.

Of course it is important to realize that although 
statistics is a branch of mathematics, there can be honest 
differences of opinion about the best way to analyze a 
problem. This fact arises because all statistical methods are 
based on relatively simple mathematical models of reality, 
so the results of the statistical tests are accurate only to the 
extent that the reality and the mathematical model under-
lying the statistical test are in reasonable agreement.

  �WHY NOT JUST DEPEND ON 
THE JOURNALS?

Aside from direct personal experience, most health care 
professionals rely on medical journals to keep them 
informed about the current concepts on how to diagnose 
and treat their patients. Since few members of the clinical 
or biomedical research community are conversant in the 
use and interpretation of biostatistics, most readers 
assume that when an article appears in a journal, the 
reviewers and editors have scrutinized every aspect of the 
manuscript, including the use of statistics. Unfortunately, 
this is often not so.

Beginning in the 1950s, several critical reviews* of the 
use of statistics in the general medical literature consis-
tently found that about half the articles used incorrect 
statistical methods. This situation led many of the larger 
journals to incorporate formal statistical reviews (by a 
statistician) into the peer review process. Reviews of the 
efficacy of providing secondary statistical reviews of ten-
tatively accepted papers have revealed that about half (or 
more) of the papers, tentatively accepted for publication, 
have statistical problems.† For the most part, these errors 
are resolved before publication, together with substantive 
issues raised by the other (content) reviewers, and the rate 

of statistical problems in the final published papers is 
much lower.

By 1995, most (82%) of the large-circulation general 
medical journals had incorporated a formal statistical 
review into the peer review process. There was a 52% 
chance that a paper published in one of these journals 
would receive a statistical review before it was published.‡ 
This situation was not nearly as common among the 
smaller specialty and subspecialty journals. Only 31% of 
these journals had a statistical reviewer available and only 
27% of published papers had been reviewed by a statisti-
cian.

As the demands for evidence of efficacy have increased, 
so has the appreciation of the problem of biased studies in 
which the outcome is influenced by the selection of people 
included in the study or the precise therapies that are 
being compared. Sponsorship of the research by compa-
nies with a financial interest in the outcome of the study 
can influence the conclusions of the resulting papers. 
These problems are more subtle than just applying the 
wrong statistical test. Indeed, reviews of specialty journals 
continue to show a high frequency of statistical problems 
in published papers.§

‡Goodman SN, Altman DG, George SL. Statistical reviewing policies of 
medical journals: caveat lector? J Gen Intern Med. 1998;13:753–756.
§More recent reviews, while dealing with a more limited selection of 
journals, have shown that this problem still persists. See Rushton L. 
Reporting of occupational and environmental research: use and mis-
use of statistical and epidemiological methods. Occup Environ Med. 
2000;57:1–9; Dimick JB, Diener-West M, Lipsett PA. Negative results 
of randomized clinical trials published in the surgical literature. Arch 
Surg. 2001;136:796–800; Dijkers M, Kropp GC, Esper RM, Yavuzer G, 
Cullen N, Bakdalieh Y. Quality of intervention research reporting in 
medical rehabilitation journals. Am J Phys Med Rehab. 2002;81:21–33; 
Welch GE II, Gabbe SG. Statistics usage in the American Journal of 
Obstetrics and Gynecology: has anything changed? Am J Obstet Gynecol. 
2002;186:584–586; Maggard MA, O’Connell JB, Liu JH, Etzioni DA, Ko 
CY. Sample size calculations in surgery: are they done correctly. Sur-
gery. 2003;134:275–279; Bedard PL, Kryzzanowska MK, Pintille M, 
Tannock IF. Statistical power of negative randomized controlled trials 
presented at American Society for Clinical Oncology annual meetings. 
J Clin Oncol. 2007;25:3482–3487; Tsang R, Colley L, Lynd LD. Inade-
quate statistical power to detect clinically significant differences in 
adverse event rates in randomized controlled trials. J Clin Epidemiol. 
2009;62:609–616; Boutron I, Dutton S, Ravaud P, Altman DG. Report-
ing and interpretation of randomized controlled trials with statisti-
cally nonsignificant results for primary outcomes. JAMA. 2010;303:
2058–2064.

*Ross OB Jr. Use of controls in medical research. JAMA. 1951;145:72–75; 
Badgley RF. An assessment of research methods reported in 103 scientific 
articles from two Canadian medical journals. Can MAJ. 1961;85:256–
260; Schor S, Karten I. Statistical evaluation of medical journal manu-
scripts. JAMA. 1966;195:1123–1128; Gore S, Jones IG, Rytter EC. Misuses 
of statistical methods: critical assessment of articles in B.M.J. from Janu-
ary to March, 1976. Br Med J. 1977;1(6053):85–87.
†For a discussion of the experiences of two journals, see Gardner MJ, 
Bond J. An exploratory study of statistical assessment of papers published 
in the British Medical Journal. JAMA. 1990;263:1355–1357; Glantz SA. It 
is all in the numbers. J Am Coll Cardiol. 1993;21:835–837.
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When confronted with this observation — or the con-
fusion that arises when two seemingly comparable articles 
arrive at different conclusions — people often conclude 
that statistical analyses are maneuverable to one’s needs, 
or are meaningless, or are too difficult to understand.

Unfortunately, except when a statistical procedure 
merely confirms an obvious effect (or the paper includes 
the raw data), a reader cannot tell whether the data, in 
fact, support the author’s conclusions or not. Ironically, 
the errors rarely involve sophisticated issues that provoke 
debate among professional statisticians but are simple 
mistakes, such as neglecting to include a control group, 
not allocating treatments to subjects at random, or misus-
ing elementary tests of hypotheses. These errors generally 
bias the study on behalf of the treatments.

The existence of errors in experimental design or 
biased samples in observational studies and misuse of 
elementary statistical techniques in a substantial fraction 
of published papers is especially important in clinical 
studies. These errors may lead investigators to report a 
treatment or diagnostic test to be of statistically demon-
strated value when, in fact, the available data fail to sup-
port this conclusion. Health care professionals who believe 
that a treatment has been proved effective on the basis of 
publication in a reputable journal may use it for their 
patients. Because all medical procedures involve some 
risk, discomfort, or cost, people treated on the basis of 
erroneous research reports gain no benefit and may be 
harmed. On the other hand, errors could produce unnec-
essary delay in the use of helpful treatments. Scientific 
studies which document the effectiveness of medical 
procedures will become even more important as efforts 
grow to control medical costs without sacrificing quality. 
Such studies must be designed and interpreted correctly.

In addition to indirect costs, there are significant direct 
costs associated with these errors: money is spent, animals 
may be sacrificed, and human study participants are 
inconvenienced and may even be put at risk to collect data 
that are not interpreted correctly.

  WHY HAS THE PROBLEM PERSISTED?

Because so many people are making these errors, there is little 
peer pressure on academic investigators to use statistical 
techniques carefully. In fact, one rarely hears a word of criti-
cism. Quite the contrary, some investigators fear that their 
colleagues — and, especially, reviewers — will view a correct 
analysis as unnecessarily theoretical and complicated.

Most editors still assume that the reviewers will exam-
ine the statistical methodology in a paper with the same 
level of care that they examine the clinical protocol or 
experimental preparation. If this assumption were correct, 
one would expect all papers to describe, in detail as explicit 
as the description of the protocol or preparation, how the 
authors have analyzed their data. Yet, often the statistical 
procedures used to test hypotheses in medical journals are 
not even identified. It is hard to believe that the reviewers 
examined the methods of data analysis with the same 
diligence with which they evaluated the experiment used 
to collect the data.

To read the medical literature intelligently, you will have 
to be able to understand and evaluate the use of the statis-
tical methods used to analyze the experimental results as 
well as the laboratory methods used to collect the data. 
Fortunately, the basic ideas needed to be an intelligent 
reader — and, indeed, to be an intelligent investiga-
tor — are quite simple. The next chapter begins our discus-
sion of these ideas and methods.
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2
How to Summarize 
Data

Having successfully completed this project and dem-
onstrated the methodology, we submit a proposal to mea-
sure the height of Venusians. Our record of good work 
assures funding, and we proceed to make the measure-
ments. Following the same conservative approach, we mea-
sure the heights of all 150 Venusians. Figure 2-2 shows 
the measured heights for the entire population of Venus, 
using the same presentation as Figure 2-1. As on Mars, there 
is a distribution of heights among members of the popu-
lation, and all Venusians are around 15 cm tall, almost all 
of them being taller than 10 cm and shorter than 20 cm.

Comparing Figures 2-1 and 2-2 demonstrates that 
Venusians are shorter than Martians and that the variabil-
ity of heights within the Venusian population is smaller. 
Whereas almost all (194 of 200) the Martians’ heights fall 
in a range 20 cm wide (30 to 50 cm), the analogous range 
for Venusians (144 of 150) is only 10 cm (10 to 20 cm). 
Despite these differences, there are important similarities 
between these two populations. In both, any given mem-
ber is more likely to be near the middle of the population 
than far from it and equally likely to be shorter or taller 
than average. In fact, despite the differences in population 
size, average height, and variability, the shapes of the dis-
tributions of heights of the inhabitants of both the planets 
are almost identical. A most striking result!

  THREE KINDS OF DATA

The heights of Martians and Venusians are known as 
interval data because heights are measured on a scale 
with constant intervals, in this case, centimeters. For 

An investigator collecting data generally has two goals: 
to obtain descriptive information about the population 
from which the sample was drawn and to test hypothe-
ses about that population. We focus here on the first 
goal: to summarize data collected on a single variable  
in a way that best describes the larger, unobserved  
population.

When the value of the variable associated with any 
given individual is more likely to fall near the mean 
(average) value for all individuals in the population 
under study than far from it and equally likely to be 
above the mean and below it, the mean and standard 
deviation for the sample observations describe the loca-
tion and amount of variability among members of the 
population. When the value of the variable is more likely 
than not to fall below (or above) the mean, one should 
report the median and values of at least two other 
percentiles.

To understand these rules, assume that we observe all 
members of the population, not only a limited (ideally 
representative) sample as in an experiment. 

For example, suppose we wish to study the height of 
Martians and, to avoid any guesswork, we visit Mars and 
measure the entire population — all 200 of them. Figure 
2-1 shows the resulting data with each Martian’s height 
rounded to the nearest centimeter and represented by a 
circle. There is a distribution of heights of the Martian 
population. Most Martians are between about 35 and 45 
cm tall, and only a few (10 out of 200) are 30 cm or 
shorter, or 50 cm or taller.
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interval data, the absolute difference between two values 
can always be determined by subtraction.* The differ-
ence in heights of Martians who are 35 and 36 cm tall is 
the same as the difference in height of Martians who are 
48 and 49 cm tall. Other variables measured on interval 
scales include temperature (because a 1°C difference 
always means the same thing), blood pressure (because a 
1 mmHg difference in pressure always means the same 
thing), height, or weight.

There are other data, such as gender, state of birth, or 
whether or not a person has a certain disease, that are not 
measured on an interval scale. These variables are exam-
ples of nominal or categorical data, in which individuals 
are classified into two or more mutually exclusive and 
exhaustive categories. For example, people could be cate-
gorized as male or female, dead or alive, or as being born 
in one of the 50 states, District of Columbia, or outside 
the United States. In every case, it is possible to categorize 
each individual into one and only one category. In 

504535 40
Height (cm)

Martians
(N = 200)

30

FIGURE 2-1. Distribution of heights of 200 Martians, with each Martian’s height represented by a 
single point. Notice that any individual Martian is more likely to have a height near the mean height 
of the population (40 cm) than far from it and is equally likely to be shorter or taller than average.

addition, there is no arithmetic relationship or even 
ordering between the categories.†

Ordinal data fall between interval and nominal data. 
Like nominal data, ordinal data fall into categories, but 
there is an inherent ordering (or ranking) of the catego-
ries. Level of health (excellent, very good, good, fair, or 
poor) is a common example of a variable measured on an 
ordinal scale. The different values have a natural order, but 
the differences or “distances” between adjoining values on 
an ordinal scale are not necessarily the same and may not 
even be comparable. For example, excellent health is bet-
ter than very good health, but this difference is not neces-
sarily the same as the difference between fair and poor 
health. Indeed, these differences may not even be strictly 
comparable.

For the remainder of this chapter, we will concentrate on 
how to describe interval data, particularly how to describe 
the location and shape of the distributions.‡ Because of the 
similar shapes of the distributions of heights of Martians 
and Venusians, we will reduce all the information in  
Figures 2-1 and 2-2 to a few numbers, called parameters, of 

*Relative differences can only be computed when there is a true zero 
point. For example, height has a true zero point, so a Martian that is 45 
cm tall is 1.5 times as tall as a Martian that is 30 cm tall. In contrast, 
temperature measured in degrees Celsius or Fahrenheit does not have a 
true zero point, so it would be inaccurate to say that 100°C is twice as hot 
as 50°C. However, the Kelvin temperature scale does have a true zero 
point. Interval data that has a true zero point is called ratio data. The 
methods we will be developing only require interval data.

†Variables measured on a nominal scale in which there are only two cat-
egories are also known as dichotomous variables.
‡We will present the corresponding approaches for nominal (in Chapters 
5 and 11) and ordinal data (in Chapter 10). The basic principles are the 
same for all three kinds of data.
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the distributions. Indeed, since the shapes of the two distri-
butions are so similar, we only need to describe how they 
differ; we do this by computing the mean height and the 
variability of heights about the mean. 

  THE MEAN

To indicate the location along the height scale, define the 
population mean to be the average height of all members 
of the population. Population means are often denoted by 
m, the Greek letter mu. When the population is made up 
of discrete members,

Population mean =

Sum of values, e.g., heightss, for
each member of population

Number of poppulation members

The equivalent mathematical statement is

µ = ∑ X

N

in which S, Greek capital letter sigma, indicates the sum of 
the values of the variable X for all N members of the popu-
lation. Applying this definition to the data in Figures 2-1 
and 2-2 yields the result that the mean height of Martians 

is 40 cm and the mean height of Venusians is 15 cm. These 
numbers summarize the qualitative conclusion that the 
distribution of heights of Martians is higher than the dis-
tribution of heights of Venusians.

  MEASURES OF VARIABILITY

Next, we need a measure of dispersion about the mean. A 
value an equal distance above or below the mean should 
contribute the same amount to our index of variability, 
even though in one case the deviation from the mean is 
positive and in the other it is negative. Squaring a number 
makes it positive, so let us describe the variability of a 
population about the mean by computing the average 
squared deviation from the mean. The average squared 
deviation from the mean is larger when there is more vari-
ability among members of the population (compare the 
Martians and Venusians). It is called the population vari-
ance and is denoted by s 2, the square of the lower case 
Greek sigma. Its precise definition for populations made 
up of discrete individuals is

Population variance =

Sum of value associa( tted
with memberof
population population me- aan)

Number of population members

2

The equivalent mathematical statement is

σ µ2 = ∑ −(X

N

)2

Note that the units of variance are the square of the 
units of the variable of interest. In particular, the variance 
of Martian heights is 25 cm2 and the variance of Venusian 
heights is 6.3 cm2. These numbers summarize the qualita-
tive conclusion that there is more variability in heights of 
Martians than in heights of Venusians.

Since variances are often hard to visualize, it is more 
common to present the square root of the variance, which 
we might call the square root of the average squared devia-
tion from the mean. Since that is quite a mouthful, this 
quantity has been named the standard deviation, s. There-
fore, by definition,

Population standard deviation Population var= iiance

=

Sum of (value associated with member

of popuulation population mean)

Number of populat

2−
iion members

15 20
Height (cm)

Venusians
(N = 150)

10

FIGURE 2-2. Distribution of heights of 150 Venusians. 
Notice that although the average height and dispersion  
of heights about the mean differ from those of Martians 
(Fig. 2-1), they both have a similar bell-shaped appearance.
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or mathematically,

σ σ µ= = ∑ −2 (X

N

)2

where the symbols are defined as before. Note that the stan-
dard deviation has the same units as the original observa-
tions. For example, the standard deviation of Martian 
heights is 5 cm, and the standard deviation of Venusian 
heights is 2.5 cm.

  THE NORMAL DISTRIBUTION

Table 2-1 summarizes what we found out about Martians 
and Venusians. The three numbers in the table tell a great 
deal: the population size, the mean height, and how 
much the heights vary about the mean. The distributions 
of heights on both the planets have a similar shape, so 
that roughly 68% of the heights fall within 1 standard 
deviation from the mean and roughly 95% within 2 stan-
dard deviations from the mean. This pattern occurs so 
often that mathematicians have studied it and found that 
if the observed measurement is the sum of many inde-
pendent small random factors, the resulting measure-
ments will take on values that are distributed, like the 
heights we observed on both Mars and Venus. This dis-
tribution is called the normal (or Gaussian) distribution.

Its height at any given value of X is

1

2

1

2

2

σ σπ
µ

exp − −

















X )

Note that the distribution is completely defined by the 
population mean m and population standard deviation s. 
Therefore, the information given in Table 2-1 is not just a 
good abstract of the data, it is all the information one 
needs to describe the population fully if the distribution of 
values follows a normal distribution.

  GETTING THE DATA

So far, everything we have done has been exact because 
we followed the conservative course of examining every 
single member of the population. Usually it is physically 
or fiscally impossible to do this, and we are limited to 
examining a sample of n individuals drawn from the pop-
ulation in the hope that it is representative of the com-
plete population. Without knowledge of the entire 
population, we can no longer know the population mean, 
m, and population standard deviation, s. Nevertheless, we 
can estimate them from the sample. To do so, however, 
the sample has to be “representative” of the population 
from which it is drawn.

Random Sampling
All statistical methods are built on the assumption that 
the individuals included in your sample represent a ran-
dom sample from the underlying (and unobserved) popu-
lation. In a random sample every member of the population 
has an equal probability (chance) of being selected for the 
sample. For the results of any of the methods developed in 
this book to be reliable, this assumption has to be met.

The most direct way to create a simple random sample 
would be to obtain a list of every member of the popula-
tion of interest, number them from 1 to N (where N is the 
number of population members), then use a computer-
ized random number generator to select the n individuals 
for the sample. Table 2-2 shows 100 random numbers 
between 1 and 150 created with a random number gen-
erator. Every number has the same chance of appearing 
and there is no relationship between adjacent numbers.

We could use this table to select a random sample of 
Venusians from the population shown in Figure 2-2. To do 
this, we number the Venusians from 1 to 150, beginning 
with number 1 for the far left individual in Figure 2-2, 
numbers 2 and 3 for the next two individuals in the second 
column in Figure 2-2, numbers 4, 5, 6, and 7 for the indi-
viduals in the next column, until we reach the individual 

  TABLE 2-1. Population Parameters for Heights of Martians and Venusians

Size of Population Population Mean (cm)
Population Standard  

Deviation (cm)

Martians 200 40 5.0
Venusians 150 15 2.5
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at the far right of the distribution, who is assigned the 
number 150. To obtain a simple random sample of six 
Venusians from this population, we take the first six num-
bers in the table — 2, 101, 49, 54, 30, and 137 — and select 
the corresponding individuals. Figure 2-3 shows the result 
of this process. (When a number repeats, as with the two 
7s in the first column of Table 2-2, simply skip the repeats 
because the corresponding individual has already been 
selected.)

We could create a second random sample by simply 
continuing in the table beginning with the seventh entry, 
40, or starting in another column. The important point is 
not to reuse any sequence of random numbers already 
used to select a sample. (As a practical matter, one would 
probably use a computerized random number generator, 
which automatically makes each sequence of random 
numbers independent of the other sequences it gener-
ates.) In this way, we ensure that every member of the 
population is equally likely to be selected for observation 
in the sample.

The list of population members from which we drew the 
random sample is known as a sampling frame. Sometimes 
it is possible to obtain such a list (for example, a list of all 
people hospitalized in a given hospital on a given day), but 

  TABLE 2-2. One Hundred Random Numbers between 1 and 150

2 135 4 138 57
101 26 116 131 77

49 99 146 137 129
54 83 4 121 129
30 102 7 128 15

137 85 71 114 7
40 67 109 34 123

6 23 120 6 72
112 7 131 58 38

74 30 126 47 79
108 82 96 57 123

55 32 16 114 41
7 81 81 37 21
4 52 131 62 7
7 38 55 102 5

37 61 142 42 8
116 5 41 111 109

76 83 51 37 40
100 82 49 11 93

83 146 42 50 35

15

137

20

Height (cm)

Venusians

Sample, (n = 6)

10

101

54

49

30

2

FIGURE 2-3. To select n = 6 Venusians at random, we 
number the entire population of N = 150 Venusians from 1 
to 150, beginning with the first individual on the far left of 
the population as number 1. We then select six random 
numbers from Table 2-2 and select the corresponding 
individuals for the sample to be observed.



12 C hap t e r  2

often no such list exists. When there is no list, investigators 
use other techniques for creating a random sample, such 
as dialing telephone numbers at random for public opin-
ion polling or selecting geographic locations at random 
from maps. The issue of how the sampling frame is con-
structed can be very important in terms of how well and 
to whom the results of a given study generalize to indi-
viduals beyond the specific individuals in the sample.*

The procedure we just discussed is known as a simple 
random sample. In more complex designs, particularly in 
large surveys or clinical trials, investigators sometimes use 
stratified random samples in which they first divide the 
population into different subgroups (perhaps based on 
gender, race, or geographic location), then construct sim-
ple random samples within each subgroup (strata). This 
procedure is used when there are widely varying numbers 
of people in the different subpopulations so that obtain-
ing adequate sample sizes in the smaller subgroups would 
require collecting more data than necessary in the larger 
subpopulations if the sampling was done with a simple 
random sample. Stratification reduces data collection 
costs by reducing the total sample size necessary to obtain 
the desired precision in the results, but makes the data 
analysis more complicated. The basic need to create a ran-
dom sample in which each member of each subpopula-
tion (strata) has the same chance of being selected is the 
same as in a simple random sample.

Bias
The primary reason for random sampling — whether a 
simple random sample or a more complex stratified 
sample — is to avoid bias in selecting the individuals to 
be included in the sample. A bias is a systematic difference 
between the characteristics of the members of the sample 
and the population from which it is drawn.

Biases can be introduced purposefully or by accident. 
For example, suppose you are interested in describing the 
age distribution of the population. The easiest way to 
obtain a sample would be to simply select the people whose 
age is to be measured from the people in your biostatistics 
class. The problem with this convenience sample is that you 
will be leaving out everyone not old enough to be learning 
biostatistics or those who have outgrown the desire to do 
so. The results obtained from this convenience sample 

would probably underestimate both the mean age of peo-
ple in the entire population as well as the amount of varia-
tion in the population. Biases can also be introduced by 
selectively placing people in one comparison group or 
another. For example, if one is conducting an experiment 
to compare a new drug with conventional therapy, it would 
be possible to bias the results by putting the sicker people 
in the conventional therapy group with the expectation 
that they would do worse than people who were not as sick 
and were receiving the new drug. Random sampling pro-
tects against both these kinds of biases.

Biases can also be introduced when there is a system-
atic error in the measuring device, such as when the zero 
on a bathroom scale is set too high or too low, so that all 
measurements are above or below the real weight.†

Another source of bias can come from the people mak-
ing or reporting the measurements if they have hopes or 
beliefs that the treatment being tested is or is not superior 
to the control group or conventional therapy being stud-
ied. It is common, particularly in clinical research, for 
there to be some room for judgment in making and 
reporting measurements. If the investigator wants the 
study to come out one way or another, there is always the 
possibility for reading the measurements systematically 
low in one group and systematically high in the other.

The best way to avoid this measurement bias is to have 
the person making the measurements blinded to which 
treatment led to the data being measured. For example, 
suppose that one is doing a comparison of the efficacy of 
two different stents (small tubes inserted into arteries) to 
keep coronary arteries (arteries in the heart) open. To 
blind the measurements, the person reading the data on 
artery size would not know whether the data came from a 
person in the control group (who did not receive a stent), 
or which of the different stents was used in a given person.

Another kind of bias is due to the placebo effect, the 
tendency of people to report a change in condition simply 
because they received a treatment, even if the treatment 
had no biologic effect. For example, about one-third of 
people given an inert injection that they thought was  
an anesthetic reported a lessening of dental pain. To con-
trol for this effect in clinical experiments, it is common to 

*We will return to this issue in Chapter 12, with specific emphasis on doing 
clinical research on people being served at academic medical centers.

†For purposes of this text, we assume that the measurements themselves 
are unbiased. Random errors associated with the measurement process 
are absorbed into the other random elements associated with the sam-
pling process.
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give one group a placebo so that they think that they are 
receiving a treatment. Examples of placebos include an 
injection of saline, a sugar pill, or surgically opening and 
closing without performing any specific procedure on the 
target organ. Leaving out a placebo control can seriously 
bias the results of an experiment in favor of the treatment. 
Ideally, the experimental subject would not know if they 
were receiving a placebo or an active treatment. When the 
subject does not know whether they received a placebo or 
not, the subject is blinded.

When neither the investigator nor the subject knows 
who received which treatment, the study is double blinded. 
For example, in double-blind drug studies, people are 
assigned treatments at random and neither the subject 
nor the person delivering the drug and measuring the out-
come knows whether the subject received an active drug 
or a placebo. The drugs are delivered with only a number 
code identifying them. The code is broken only after all 
the data have been collected.

Experiments and Observational Studies
There are two ways to obtain data: experiments and obser-
vational studies. Experiments permit drawing stronger 
conclusions than observational studies, but often it is only 
possible to do observational studies.

In an experiment, the investigator selects individuals 
from the population of interest (using an appropriate 
sampling frame), then assigns the selected individuals to 
different treatment groups, applies the treatments, and 
measures the variables of interest. Drug trials where peo-
ple are randomly assigned to receive conventional therapy 
or a drug that is thought to improve their condition are 
common biomedical experiments. Since the only system-
atic difference between the different treatment groups is 
the treatment itself, one can be reasonably confident that 
the treatment caused the observed differences.

Selecting people and randomly assigning them to dif-
ferent experimental conditions is not always possible or 
ethical. In an observational study the investigators obtain 
data by simply observing events without controlling them. 
Such studies are prone to two potentially serious prob-
lems. First, the groups may vary in ways the investigators 
do not notice or choose to ignore and these differences, 
rather than the treatment itself, may account for the dif-
ferences the investigators find. Second, such studies can be 
subject to bias in patient recall, investigator assessment,  
or selection of the treatment group or the control group.

Observational studies do, however, have advantages. 
First, they are relatively inexpensive because they are often 
based on reviews of existing information or information 
that is already being collected for other purposes (like 
medical records) and because they generally do not 
require direct intervention by the investigator. Second, 
ethical considerations or prevailing medical practice can 
make it impossible to carry out active manipulation of the 
variable under study.

Because of the potential difficulties in all observa-
tional studies, it is critical that the investigators explicitly 
specify the criteria they used for classifying each subject 
in the control or case group. Such specifications help 
minimize biases when the study is done as well as help 
you, as the consumer of the resulting information, judge 
whether the classification rules made sense.

For example, epidemiologists have compared the rates 
of lung cancer and heart disease in nonsmokers whose 
spouses or coworkers smoke with the rates observed in 
nonsmokers living in smokefree environments. These 
studies have shown higher rates of lung cancer and heart 
disease in the people exposed to secondhand smoke, lead-
ing to the conclusion that secondhand smoke increases 
the risk of disease (Fig. 2-4A).

When doing an observational study, however, one always 
has to worry that the association observed in the data is not 
due to a cause-and-effect link between the two variables (in 
this case, secondhand smoke causing lung cancer), but 
rather the presence of some unobserved confounding vari-
able that was related causally to the other two variables and 
so makes it appear that the two observed variables were 
causally linked when they were not (Fig. 2-4B). For exam-
ple, a tobacco industry consultant has claimed that non-
smokers married to smokers are more likely to own pet 
birds and that the birds spread diseases that increase the risk 
of lung cancer.*

The only way to completely exclude the possibility of 
confounding variables would be to conduct a randomized 
trial in which nonsmokers were randomly selected from the 
population, randomly allocated to marry other nonsmokers 
or smokers, then monitored for many years to see who devel-
oped heart disease or lung cancer. (Presumably the owner-
ship of pet birds would be randomly distributed between the 
people assigned to marry nonsmokers and assigned to marry 
smokers.) Such an experiment could never be done.

*Gardiner A, Lee P. Pet birds and lung cancer. BMJ. 1993;306(6869):60.
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It is, however, still possible to conclude that there are 
causal links between exposure to some agent (such as sec-
ondhand smoke) and an outcome (such as lung cancer) 
from observational studies. Doing so requires studies that 
account for known confounding variables either through 
an experimental design that separates people based on the 
effect of the confounding variable (by stratifying the con-
founding variable) or by controlling for their effects using 
more advanced statistical procedures,* and considering 
other related experimental evidence that helps explain the 
biologic mechanisms that cause the disease. These consid-
erations have led reputable scientists and health authori-
ties to conclude that secondhand smoke causes both lung 
cancer and heart disease.

The statistical techniques for analyzing data collected 
from experiments and observational studies are the same. 
The differences lie in how you interpret the results, particu-
larly how confident you can be in using the word “cause.”

Randomized Clinical Trials
One procedure, called a randomized clinical trial, is the 
method of choice for evaluating therapies because it 

avoids the selection biases that can creep into observa-
tional studies. The randomized clinical trial is an example 
of what statisticians call an experimental study because the 
investigator actively manipulates the treatment under 
study, making it possible to draw much stronger conclu-
sions than are possible from observational studies about 
whether or not a treatment produced an effect. Experi-
mental studies are the rule in the physical sciences and 
animal studies in the life sciences but are less common in 
studies involving human subjects.

Randomization reduces biases that can appear in obser-
vational studies and, since all clinical trials are prospective, 
no one knows how things will turn out at the beginning. 
This fact also reduces the opportunity for bias. Perhaps for 
these reasons, randomized clinical trials often show thera-
pies to be of little or no value, even when observational 
studies have suggested that they were efficacious.†

Why, then, are not all therapies subjected to random-
ized clinical trials? Once something has become part of 
generally accepted medical practice — even if it did so 
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FIGURE 2-4. Panel A shows the situation that 
would exist if breathing secondhand smoke 
caused lung cancer. Panel B shows the situation 
that would exist if, as suggested by a tobacco 
industry consultant, people exposed to 
secondhand smoke were more likely to own  
pet birds and the birds carried diseases that 
caused lung cancer, while there was no 
connection between breathing secondhand 
smoke and lung cancer. Since owning a pet  
bird would be linked both to exposure to 
secondhand smoke and lung cancer this 
(unobserved) confounding variable could make 
it appear that secondhand smoke caused lung 
cancer when, in fact, there was no link.

*For a discussion of the statistical approaches to control for confounding 
variables, see Glantz SA, Slinker BK. Regression with a qualitative depen-
dent variable. In: Primer of Applied Regression and Analysis of Variance, 
2nd ed. New York: McGraw-Hill; 2001:chap 12.

†For a readable and classic discussion of the place of randomized clinical 
trials in providing useful clinical knowledge, together with a sobering 
discussion of how little of commonly accepted medical practice has ever 
been actually shown to do any good, see Cochran K. Effectiveness and 
Efficiency: Random Reflections on Health Services. London: Nuffield Pro-
vincial Hospitals Trust; 1972.
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without any objective demonstration of its value — it is 
extremely difficult to convince patients and their physi-
cians to participate in a study that requires withholding it 
from some of the patients. Second, randomized clinical 
trials are always prospective; a person recruited into the 
study must be monitored for some time, often many years. 
People move, lose interest, or die for reasons unrelated to 
the study. Simply keeping track of people in a randomized 
clinical trial is often a major task.

To collect enough patients to have a meaningful sam-
ple, it is often necessary to have many groups at different 
institutions participating. While it is great fun for the 
people running the study, it is often just one more task 
for the people at the collaborating institutions. All these 
factors often combine to make randomized clinical trials 
expensive and difficult to execute. Nevertheless, when 
done well, they provide the most definitive answers to 
questions regarding the relative efficacy of different 
treatments.

  �HOW TO ESTIMATE THE MEAN 
AND STANDARD DEVIATION  
FROM A SAMPLE

Having obtained a random sample from a population of 
interest, we are ready to use information from that sample 
to estimate the characteristics of the underlying popula-
tion. The estimate of the population mean is called the 
sample mean and is defined analogously to the population 
mean:

Sample mean =

Sum of values, e.g., heights, off
each observation in sample

Number of observvations in sample

The equivalent mathematical statement is

X
X

n
= ∑

in which the bar over the X denotes that it is the mean of 
the n observations of X.

The estimate of the population standard deviation is 
called the sample standard deviation s and is defined as

Sample
standard
deviation=

Sumof valueof observationin

the sample samplem

(

- eean)

Numberof observationsinsample

2

-1

or, mathematically,*

s
X X

n
= ∑ −

−
( )2

1

(The standard deviation is also often denoted as SD.)

The definition of the sample standard deviation, s, dif-
fers from the definition of the population standard devia-
tion s in two ways: (1) the population mean m has been 
replaced by our estimate of it, the sample mean X , and 
(2) we compute the “average” squared deviation of a sam-
ple by dividing by n - 1 rather than n. The precise reason 
for dividing by n - 1 rather than n requires substantial 
mathematical arguments, but we can present the follow-
ing intuitive justification: The sample will never show as 
much variability as the entire population and dividing by 
n - 1 instead of n compensates for the resultant tendency 
of the sample standard deviation to underestimate the 
population standard deviation.

In conclusion, if you are willing to assume that the 
sample was drawn from a normal distribution, summarize 
data with the sample mean and sample standard devia-
tion, the best estimates of the population mean and popu-
lation standard deviation, because these two parameters 
completely define the normal distribution. When there is 
evidence that the population under study does not follow 
a normal distribution, summarize data with the median 
and upper and lower percentiles discussed later in this 
chapter.

  HOW GOOD ARE THESE ESTIMATES?

The mean and standard deviation computed from a ran-
dom sample are estimates of the mean and standard devi-
ation of the entire population from which the sample was 
drawn. There is nothing special about the specific random 
sample used to compute these statistics, and different ran-
dom samples will yield slightly different estimates of the 
true population mean and standard deviation. To quanti-
tate how accurate these estimates are likely to be, we can 
compute their standard errors. It is possible to compute a 
standard error for any statistic, but here we shall focus on 
the standard error of the mean. This statistic quantifies the 

*All equations in the text will be presented in the form most conducive 
to understanding statistical concepts. Often there is another, mathemati-
cally equivalent, form of the equation which is more suitable for compu-
tation. These forms are tabulated in Appendix A.
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certainty with which the mean computed from a random 
sample estimates the true mean of the population from 
which the sample was drawn.

What is the standard error of the mean?
Figure 2-5A shows the same population of Martian 

heights we considered before. Since we have complete 
knowledge of every Martian’s height, we will use this 
example to explore how accurately statistics computed 
from a random sample describe the entire population. 
Suppose that we draw a random sample of 10 Martians 
from the entire population of 200, then compute the sam-
ple mean and sample standard deviation. The 10 Martians 
in the sample are indicated by solid points in Figure 2-5A. 

Figure 2-5B shows the results of this random sample as it 
might be reported in a journal article, together with the 
sample mean ( X  = 41.5 cm) and sample standard devia-
tion (s = 3.8 cm). The values are close, but not equal, to 
the population mean (m = 40 cm) and standard deviation 
(s = 5 cm).

There is nothing special about this sample — after all, 
it was drawn at random — so let us consider a second ran-
dom sample of 10 Martians from the same population of 
200. Figure 2-5C shows the results of this sample, with the 
corresponding Martians that comprise the sample identi-
fied in Figure 2-5A. While the mean and standard devia-
tion, 36 and 5 cm, of this second random sample are also 

504535 40

Height (cm)

200 Martians

Mean ± SD
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B

FIGURE 2-5. If one draws three different samples of 10 members each from a single population, 
one will obtain three different estimates of the mean and standard deviation.
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similar to the mean and standard deviation of the whole 
population, they are not the same. Likewise, they are also 
similar, but not identical, to those from the first sample.

Figure 2-5D shows a third random sample of 10 Mar-
tians, identified in Figure 2-5A with circles containing 
dots. This sample leads to estimates of 40 and 5 cm for the 
mean and standard deviation.

Now, we make an important change in emphasis. 
Instead of concentrating on the population of all 200 
Martians, let us examine the means of all possible random 
samples of 10 Martians. We have already found three pos-
sible values for this mean, 41.5, 36, and 40 cm, and there 
are many more possibilities. Figure 2-6 shows these three 
means, using the same symbols as Figure 2-5. To better 
understand the amount of variability in the means of 
samples of 10 Martians, let us draw another 22 random 
samples of 10 Martians each and compute the mean  
of each sample. These additional means are plotted in  
Figure 2-6 as open points.

Now that we have drawn 25 random samples of 10 
Martians each, have we exhausted the entire population of 
200 Martians? No. There are more than 1016 different ways 
to select 10 Martians at random from the population of 
200 Martians.

Look at Figure 2-6. The collection of the means of  
25 random samples, each of 10 Martians, has a roughly 
bell-shaped distribution, which is similar to the normal 
distribution. When the variable of interest is the sum of 

many other independent random variables, its distribu-
tion will tend to be normal, regardless of the distributions 
of the variables used to form the sum. Since the sample 
mean is just such a sum, its distribution will tend to  
be normal, with the approximation improving as the sam-
ple size increases. (If the sample were drawn from a nor-
mally distributed population, the distribution of the 
sample means would have a normal distribution regard-
less of the sample size.) Therefore, it makes sense to describe 
the data in Figure 2-6 by computing their mean and  
standard deviation. Since the mean value of the 25 points 
in Figure 2-6 is the mean of the means of 25 samples, we 
will denote it X X . The standard deviation is the standard 
deviation of the means of 25 independent random samples 
of 10 Martians each, and so we will denote it s X  Using the 
formulas for mean and standard deviation presented earlier, 
we compute X X  = 40 cm and s X  = 1.6 cm.

The mean of the sample means X X  is (within mea-
surement and rounding error) equal to the mean height m 
of the entire population of 200 Martians from which we 
drew the random samples. This is quite a remarkable 
result, since X X  is not the mean of a sample drawn directly 
from the original population of 200 Martians; X X is the 
mean of 25 random samples of size 10 drawn from the 
population consisting of all 1016 possible values of the mean 
of random samples of size 10 drawn from the original popu-
lation of 200 Martians.

Is s X  equal to the standard deviation s of the popula-
tion of 200 Martians? No. In fact, it is quite a bit smaller; 
the standard deviation of the collection of sample means 
s X  is 1.6 cm while the standard deviation for the whole 
population is 5 cm. Just as the standard deviation of the 
original sample of 10 Martians s is an estimate of the vari-
ability of Martians’ heights, s X  is an estimate of the vari-
ability of possible values of means of samples of 10 Martians. 
Since when one computes the mean, extreme values tend 
to balance each other, there will be less variability in the 
values of the sample means than in the original popula-
tion. s X  is a measure of the precision with which a sam-
ple mean X estimates the population mean m. We might 
name s X  “standard deviation of means of random sam-
ples of size 10 drawn from the original population.” To be 
brief, statisticians have coined a shorter name, the stan-
dard error of the mean (SEM).

Since the precision with which we can estimate the 
mean increases as the sample size increases, the standard 
error of the mean decreases as the sample size increases. 
Conversely, the more variability in the original population, 

504535 4030

FIGURE 2-6. If one draws more and more samples — each 
with 10 members — from a single population, one eventually 
obtains the population of all possible sample means. This 
figure illustrates the means of 25 samples of 10 Martians 
each drawn from the population of 200 Martians shown in 
Figures 2-1 and 2-5A. The means of the three specific 
samples shown in Figure 2-5 are shown using corresponding 
symbols. This new population of all possible sample means 
will be normally distributed regardless of the nature of  
the original population; its mean will equal the mean of  
the original population; its standard deviation is called the 
standard error of the mean.
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the more variability will appear in possible mean values of 
samples; therefore, the standard error of the mean increases 
as the population standard deviation increases. The true 
standard error of the mean of samples of size n drawn 
from a population with standard deviation s is*

σ σ
X

n
=

The best estimate of s
X  from a single sample is

s
s

nX
=

Since the possible values of the sample mean tend to 
follow a normal distribution, the true (and unobserved) 
mean of the original population will lie within 2 standard 
errors of the sample mean about 95% of the time.

As already noted, mathematicians have shown that the 
distribution of mean values will always approximately fol-
low a normal distribution regardless of how the popula-
tion from which the original samples were drawn is 
distributed. We have developed what statisticians call the 
Central Limit Theorem. It says:

•	 The distribution of sample means will be approximately 
normal regardless of the distribution of values in the 
original population from which the samples were drawn.

•	 The mean value of the collection of all possible sample 
means will equal the mean of the original population.

•	 The standard deviation of the collection of all possible 
means of samples of a given size, called the standard error 
of the mean, depends on both the standard deviation of 
the original population and the size of the sample.

Figure 2-7 illustrates the relationship between the 
sample mean, the sample standard deviation, and the 
standard error of the mean and how they vary with 
sample size as we measure more and more Martians.† 
As we add more Martians to our sample, the sample 
mean X  and standard deviation s estimate the popula-

tion mean m and standard deviation s with increasing 
precision. This increase in the precision with which the 
sample mean estimates the population mean is reflected 
by the smaller standard error of the mean with larger 
sample sizes. Therefore, the standard error of the mean 
tells not about variability in the original population, as 
the standard deviation does, but about the certainty 
with which a sample mean estimates the true popula-
tion mean.

The standard deviation and standard error of the 
mean measure two very different things and are often 
confused. Most medical investigators summarize their 
data with the standard error of the mean because it is 
always smaller than the standard deviation. It makes 
their data look better. However, unlike the standard 
deviation, which quantifies the variability in the popula-
tion, the standard error of the mean quantifies uncer-
tainty in the estimate of the mean. Since readers are 
generally interested in knowing about the population, 
data should generally not be summarized with the stan-
dard error of the mean.

To understand the difference between the standard 
deviation and standard error of the mean and why one 
ought to summarize data using the standard deviation, 
suppose that in a sample of 20 patients an investigator 
reports that the mean cardiac output was 5.0 L/min with 
a standard deviation of 1 L/min. Since about 95% of all 
population members fall within about 2 standard devia-
tions of the mean, this report would tell you that, assum-
ing that the population of interest followed a normal 
distribution, it would be unusual to observe a cardiac 
output below about 3 or above about 7 L/min. Thus, you 
have a quick summary of the population described in the 
paper and a range against which to compare specific 
patients you examine. Unfortunately, it is unlikely that 
these numbers would be reported, the investigator being 
more likely to say that the cardiac output was 5.0 ± 0.22 
(SEM) L/min. If you confuse the standard error of the 
mean with the standard deviation, you would believe 
that the range of most of the population was narrow 
indeed — 4.56 to 5.44 L/min. These values describe the 
range which, with about 95% confidence, contains the 
mean cardiac output of the entire population from 
which the sample of 20 patients was drawn. (Chapter 7 
discusses these ideas in detail.) In practice, one generally 
wants to compare a specific patient’s cardiac output not 
only with the population mean but with the spread in 
the population taken as a whole.

*This equation is derived in Chapter 4.
†Figure 2-7 was obtained by selecting two Martians from Figure 2-1 at 
random, then computing X , s , and s

X
.  Then one more Martian was 

selected and the computations done again. Then, a fourth, a fifth, and so 
on, always adding to the sample already drawn. Had we selected different 
random samples or the same samples in a different order, Figure 2-7 
would have been different.
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FIGURE 2-7. As the size of a random sample of Martians drawn from the population depicted in 
Figure 2-1 grows, the precision with which the sample mean and sample standard deviation, X
and s, estimate the true population mean and standard deviation, m and s, increases. This 
increasing precision appears in two ways: (1) the difference between the statistics computed 
from the sample (the points) moves closer to the true population values (the lines), and (2) the 
size of the standard error of the mean decreases.

  PERCENTILES

Armed with our understanding of how to describe nor-
mally distributed populations using the mean and stan-
dard deviation, we extend our research efforts and 
measure the heights of all Jupiter’s inhabitants but also to 
compute the mean and standard deviation of the heights 
of all Jovians. The resulting data show the mean height to 
be 37.6 cm and the standard deviation of heights to be 

4.5  cm. By comparison with Table 2-1, Jovians appear 
quite similar in height to Martians, since these two param-
eters completely specify a normal distribution.

The actual distribution of heights on Jupiter, however, 
tells a different story. Figure 2-8A shows that, unlike those 
living on the other two planets, a given Jovian is not 
equally likely to have a height above average as below aver-
age; the distribution of heights of all population members 
is no longer symmetric but skewed. The few individuals 
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FIGURE 2-8. When the population values are not distributed symmetrically about the mean, 
reporting the mean and standard deviation can give the reader an inaccurate impression of the 
distribution of values in the population. Panel A shows the true distribution of the heights of the 
100 Jovians (note that it is skewed toward taller heights). Panel B shows a normally distributed 
population with 100 members and the same mean and standard deviation as in panel A. 
Despite the fact that the means and standard deviations are the same, the distributions of 
heights in the two populations are quite different.

who are much taller than the rest increase the mean and 
standard deviation in a way that led us to think that most 
of the heights were higher than they actually are and that 
the variability of heights was greater than it actually is. 
Specifically, Figure 2-8B shows a population of 100 indi-
viduals whose heights are distributed according to a  
normal or Gaussian distribution with the same mean and 
standard deviation as the 100 Jovians in Figure 2-8A. It is 
quite different. So, although we can compute the mean 
and standard deviation of heights of Jupiter’s — or, for 
that matter, any — population, these two numbers do not 
summarize the distribution of heights nearly as accurately 

as they did when the heights in the population followed a 
normal distribution.

An alternative approach that better describes such data 
is to report the median. The median is the value that half 
the members of the population fall below. Figure 2-9A 
shows that half the Jovians are shorter than 36 cm; 36 cm 
is the median. Since 50% of the population values fall 
below the median, it is also called the 50th percentile.

Calculation of the median and other percentiles is sim-
ple. First, list the n observations in order. The median, the 
value that defines the lower half of the observations, is 
simply the .5 (n + 1) observation. When there are an odd 
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FIGURE 2-9. One way to describe a skewed distribution is with percentiles. The median is the 
point that divides the population in half. Panel A shows that 36 cm is the median height on 
Jupiter. Panel B shows the 25th and 75th percentiles, the points locating the lowest and highest 
quarter of the heights, respectively. The fact that the 25th percentile is closer to median than 
the 75th percentile indicates that the distribution is skewed toward higher values.

number of observations, the median falls on one of the 
observations. For example, if there are 27 observations, 
the .5 (27 + 1) = 14th observation (listed from smallest to 
largest) is the median. When there is an even number of 
observations, the median falls between two observations. 
For example, if there are 40 observations, the median 
would be the .5 (40 + 1) = 20.5th observation. Since there 

is no 20.5th observation, we take the average of 20th and 
21st observation.

Other percentile points are defined analogously. For 
example, the 25th percentile point, the point that defines 
the lowest quarter of the observations, is just the .25 (n + 1) 
observation. Again, if the value falls between two observa-
tions, take the mean of the two surrounding observations. 
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In general, the pth percentile point is the (p/100)(n + 1) 
observation.*

To give some indication of the dispersion of heights in 
the population, report the value that separates the lowest 
(shortest) 25% of the population from the rest and the 
value that separates the shortest 75% of the population 
from the rest. These two points are called the 25th and 75th 
percentile points, respectively, and the interval they define 
is called the interquartile range. For the Jovians, Figure 2-9B 
shows that these percentiles are 34 and 40 cm. While 
these three numbers (the 25th, 50th, and 75th percentile 

points, 34, 36, and 40 cm) do not precisely describe the 
distribution of heights, they do indicate what the range of 
heights is and that there are a few very tall Jovians but not 
many very short ones.

Although these percentiles are often used, one could 
equally well report the 5th and 95th percentile points, or, 
for that matter, report the 5th, 25th, 50th, 75th, and 95th 
percentile points.

Computing the percentile points of a population is a 
good way to see how close to a normal distribution it is. 
Recall that we said that in a population that exhibits a 
normal distribution of values, about 95% of the popula-
tion members fall within 2 standard deviations of the 
mean and about 68% fall within 1 standard deviation of 
the mean. Figure 2-10 shows that, for a normal distribu-
tion, the values of the associated percentile points are:

2.5th percentile	 Mean – 2 standard deviation
16th percentile	 Mean – 1 standard deviation
25th percentile	 Mean – 0.67 standard deviation
50th percentile (median)	 Mean
75th percentile	� Mean + 0.67 standard deviation
84th percentile	 Mean + 1 standard deviation
97.5th percentile	 Mean + 2 standard deviation

If the values associated with the percentiles are not too 
different from what one would expect on the basis of the 

µ − 2σ µµ − σ µ + σ µ + 2σ

97.5th
percentile

84th
percentile

50th
percentile

16th
percentile

2.5th
percentile

FIGURE 2-10. Percentile points of the normal distribution.

*An alternative definition for the percentile value when the percentile 
point falls between two observations is to interpolate between the obser-
vation above and below the percentile point, rather than just averaging 
the observations. For example, in a problem in which there are 14 data 
points, the 75th percentile would be the (p/100)(n + 1) = (75/100)(14 + 1) 
= 11.25 observation. Using the approach in the text, we would just aver-
age the 11th and 12th observation. Using the alternative definition we 
would use the value 0.25 of the way between the 11th and 12th observa-
tions.  If the 11th observation is 34 and the 12th observation is 40, using 
the definition of percentile in the text, we would estimate the 75th per-
centile as (34 + 40)/2 = 37. Interpolating between the two observations, 
we would compute the 75th percentile as 34 + 0.25(40 – 34) = 35.5. (Ap-
pendix A describes how to interpolate in general.) Most computer pro-
grams use the interpolation approach. As a practical matter, when sample 
sizes are large, there is little or no difference between the two different 
ways of computing percentiles.
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mean and standard deviation, the normal distribution is 
a good approximation to the true population and then the 
mean and standard deviation describe the population 
adequately.

Why care whether or not the normal distribution is a 
good approximation? Because many of the statistical pro-
cedures used to test hypotheses — including the ones we 
will develop in Chapters 3, 4, and 9 — require that the 
population follow a normal distribution at least approxi-
mately for the tests to be reliable. (Chapters 10 and  
11 present alternative tests that do not require this 
assumption.)

Pain Associated with Diabetic Neuropathy
Peripheral neuropathy is a complication of diabetes mel-
litus in which peripheral nerves are damaged, leading to 
many symptoms, including spasms, tingling, numbness 
and pain. Because conventional treatments are often inef-
fective or have serious side effects, Dinesh Selvarajah and 
colleagues* conducted a randomized placebo-controlled 
double blind clinical trial of a cannabis-based medicinal 
extract in people with intractable pain.

They recruited people for the study who had not had 
their pain controlled using other drugs and randomly 
assigned them to receive the cannabis extract or a placebo 
for 12 weeks. The use of a placebo was particularly impor-
tant because of the placebo effect, when people report feel-
ing better because they are being treated, even if the 
treatment had no biological effect on the underlying dis-
ease process. The experiment was also double blind, with 
neither the experimental subjects nor the investigators 
knowing who was receiving the drug or placebo. Double 
blinding was particularly important because the outcome 
was a subjective measure of pain that could be biased not 
only by the placebo effect, but a desire on the part of the 
experimental subjects to please the investigators by 
reporting less pain. It was also important that the investi-
gators were blinded to the treatment group to avoid bias-
ing clinical assessments or subtly encouraging the 
experimental subjects to bias their reported subjective 
pain scores.

  �TABLE 2-3. Measured Pain in 29 People with 
Diabetic Neuropathy (n = 29)

13 4 19
8 16 37

46 23 13
61 33 8
28 18 28

7 51 25
93 26 4
10 19 12

7 20 12
100 54

*Selvarajah D, Gandhi R, Emery CJ, Tesfaye S. Randomized placebo-
controlled double-blind clinical trial of cannabis-based medicinal prod-
uct (Sativex) in painful diabetic neuropathy. Diabetes Care 2010;33:
128–130.

The investigators used standard questionnaires that 
measured superficial, deep and muscular pain, and then 
averaged the three scores to get a total pain score. Higher 
scores indicate greater pain. The data for the placebo 
appear in Table 2-3.

Figure 2-11 shows a plot of these data in a way that 
shows how they are distributed along the pain scale. Such 
a plot is called a histogram.† Simply looking at this histo-
gram suggests that the data are not drawn from a nor-
mally distributed population because the observations do 
not seem to be symmetrically distributed about the mean 
following the bell-shaped cure that describes the normal 
distribution.

As Box 2-1 shows, the mean pain score is 27.4 with a 
standard deviation of 24.5. If these data had been drawn 
from a normal distribution, about 95% of population 
members would have been within about 2 standard devi-
ations of the mean, from about 27.4 – 2 × 24.5 = –21.6 
to about 27.4 + 2 × 24.5 = 76.4. The pain score ranges 
from 0 to 100, while the upper end of this range is plau-
sible, the lower end is not: the pain score cannot be neg-
ative, so the population is highly unlikely to be normally 
distributed. (Such a comparison can be used as an infor-
mal test for normality when the measurement cannot be 
negative.)

†In general histograms can display the data over a range of values in each 
bin. The histogram in Figure 2-11 that has bins 1 unit wide (i.e., that 
shows the number of observations at each observed value) is also called 
a dot plot. 



24 C hap t e r  2

80 1006020 40

PAIN

0

FIGURE 2-11. Level of pain reported among people with diabetic neuropathy after 12 weeks of taking a 
placebo.

Box 2-1 • Descriptive Statistics for the Data on Diabetic Neuropathy in Table 2-3

Sorted Data from Table 2-3

Data Observation Number Data Observation Number
4 1 20 16
4 2 23 17
7 3 25 18
7 4 26 19
8 5 28 20
8 6 28 21

10 7 33 22
12 8 37 23
12 9 46 24
13 10 51 25
13 11 54 26
16 12 61 27
18 13 93 28
19 14 100 29
19 15

To estimate the mean, we simply add up all the observations and divide by the number of observations. From 
the data in Table 2-3, 

X
n
X= = + + + + + =∑ 13 8 46 12 12

29
27 4

. . .
.

	T herefore the estimate of the standard deviation from the sample is 

s
X

n
X=

−
= − + − + −−∑ ( ) ( . ) ( . ) ( .2 2 2

1
13 27 4 13 27 4 46 27 4)) . . . ( . ) ( . )

.
2 2 212 27 4 12 27 4

29 1
24 5

+ + − + −
−

=

To compute the median and percentile points, we first sort the observations in Table 2-3 in ascending order, as shown 
in the table in this box. The median, 50th percentile point, of the n = 29 observations is the (p/100)(n + 1) = 
(50/100)(29 + 1) = 14th data point, a value of 19. The 25th percentile is the (25/100)(29 + 1) = 7.5th point. 
Taking the mean of the 7th and 8th observation, we find that the 25th percentile point is (12 + 12)/2 = 11. Like-
wise, the 75th percentile point is the (75/100)(29 + 1) = 22.5th observation. Taking the mean of the 22nd and 
23rd observations, we find that the 75th percentile point is (33 + 37)/2 = 35.
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Because these data do not seem to follow a normal dis-
tribution, the best way to describe them is with the median 
and top and bottom quartiles. Box 2-1 shows that the 
median of these data is 19 and the 25th and 75th percen-
tile points are 11 and 35. The fact that the 25th percentile 
point is much closer to the median than the 75th percen-
tile point is a reflection of the fact that the distribution is 
not symmetrical, which is further evidence that the under-
lying population is not normally distributed.

  SUMMARY

When a population follows a normal distribution, we can 
describe its location and variability completely with two 
parameters — the mean and standard deviation. When the 
population does not follow a normal distribution at least 
roughly, it is more appropriate to describe it with the median 
and other percentiles. Since one can rarely observe all mem-
bers of a population, we will estimate these parameters from 
a sample drawn at random from the population. The stan-
dard error quantifies the precision of these estimates. For 
example, the standard error of the mean quantifies the pre-
cision with which the sample mean estimates the population 
mean.

In addition to being useful for describing a population 
or sample, these numbers can be used to estimate how 
compatible measurements are with clinical or scientific 
assertions that an intervention affected some variable. We 
now turn our attention to this problem.

  PROBLEMS

2-1 The pain scores for the people treated with the can-
nabis medicinal in the study discussed earlier in this chap-
ter are 90, 10, 45, 70, 13, 27, 11, 70, 14, 15, 13, 75, 50, 30, 
80, 40, 29, 13, 9, 7, 20, 85, 55, and 94. Find the mean, 
median, standard deviation, and 25th and 75th percen-
tiles. Do these data seem to be drawn from a normally 
distributed population? Why or why not?

2-2 Viral load of HIV-1 is a known risk factor for hetero-
sexual transmission of HIV; people with higher viral loads of 
HIV-1 are significantly more likely to transmit the virus to 
their uninfected partners. Thomas Quinn and associates.* 

studied this question by measuring the amount of HIV-1 
RNA detected in blood serum. The following data repre-
sent HIV-1 RNA levels in the group whose partners sero-
converted, which means that an initially uninfected 
partner became HIV positive during the course of the 
study; 79,725, 12,862, 18,022, 76,712, 25,6440, 14,013, 
46,083, 6808, 85,781, 1251, 6081, 50,397, 11,020, 13,633, 
1064, 496, 433, 25,308, 6616, 11,210, 13,900 RNA copies/
mL. Find the mean, median, standard deviation, and 25th 
and 75th percentiles of these concentrations. Do these 
data seem to be drawn from a normally distributed popu-
lation? Why or why not?

2-3 When data are not normally distributed, researchers 
can sometimes transform their data to obtain values that 
more closely approximate a normal distribution. One 
approach to this is to take the logarithm of the observations. 
The following numbers represent the same data described in 
Prob. 2-1 following log (base 10) transformation: 4.90, 4.11, 
4.26, 4.88, 5.41, 4.15, 4.66, 3.83, 4.93, 3.10, 3.78, 4.70, 4.04, 
4.13, 3.03, 5.70, 4.40, 3.82, 4.05, 4.14. Find the mean, median, 
standard deviation, and 25th and 75th percentiles of these 
concentrations. Do these data seem to be drawn from a 
normally distributed population? Why or why not?

2-4 Polychlorinated biphenyls (PCBs) are a class of 
environmental chemicals associated with a variety of 
adverse health effects, including intellectual impairment 
in children exposed in utero while their mothers were 
pregnant. PCBs are also one of the most abundant con-
taminants found in human fat. Tu Binh Minh and col-
leagues† analyzed PCB concentrations in the fat of a 
group of Japanese adults. They detected 1800, 1800, 
2600, 1300, 520, 3200, 1700, 2500, 560, 930, 2300, 2300, 
1700, 720 ng/g lipid weight of PCBs in the people they 
studied. Find the mean, median standard deviation, and 
25th and 75th percentiles of these concentrations. Do 
these data seem to be drawn from a normally distrib-
uted population? Why or why not?

2-5 Sketch the distribution of all possible values of the 
number on the upright face of a die. What is the mean of 
this population of possible values?

*Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-
Mangen F, Meehan MO, Lutalo T, Gray RH. Viral load and heterosexual 
transmission of human immunodeficiency virus type 1. N Engl J Med. 
2000;342:921–929.

†Minh TB, Watanabe M, Tanabe S, Yamada T, Hata J, Watanabe S. Occur-
rence of tris (4-chlorophenyl)methane, tris (4-chlorophenyl)methanol, 
and some other persistent organochlorines in Japanese human adipose 
tissue. Environ Health Perspect. 2000;108:599–603.
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2-6 Roll a pair of dice and note the numbers on each of the 
upright faces. These two numbers can be considered a 
sample of size 2 drawn from the population described in 
Prob. 2-4. This sample can be averaged. What does this 

average estimate? Repeat this procedure 20 times and plot 
the averages observed after each roll. What is this distribu-
tion? Compute its mean and standard deviation. What do 
they represent?
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3How to Test for 
Differences between 
Groups

has a cardiac catheter inserted and his or her cardiac out-
put is measured.

As with most tests of significance, we begin with the 
hypothesis that all treatments (diets) have the same 
effect (on cardiac output). Since the study includes a 
control group (as experiments generally should), this 
hypothesis is equivalent to the hypothesis that diet has 
no effect on cardiac output. Figure 3-1 shows the distri-
bution of cardiac outputs for the entire population, with 
each individual’s cardiac output represented by a circle. 
The specific individuals who were randomly selected for 
each diet are indicated by shaded circles, with different 
shading for different diets. Figure 3-1 shows that the null 
hypothesis is, in fact, true. Unfortunately, as investigators 
we cannot observe the entire population and are left with 
the problem of deciding whether or not to reject the null 
hypothesis from the limited data shown in Figure 3-2. 
There are obviously differences between the samples; the 
question is: Are these differences due to the fact that the 
different groups of people ate differently or are these differ-
ences simply a reflection of the random variation in cardiac 
output between individuals?

To use the data in Figure 3-2 to address this question, 
we proceed under the assumption that the null hypothesis 
that diet has no effect on cardiac output is correct. Since we 
assume that it does not matter which diet any particular 
individual ate, we assume that the four experimental 
groups of seven people each are four random samples of 
size 7 drawn from a single population of 200 individuals. 

Statistical methods are used to summarize data and test 
hypotheses with those data. Chapter 2 discussed how to 
use the mean, standard deviation, median, and percentiles 
to summarize data and how to use the standard error of 
the mean to estimate the precision with which a sample 
mean estimates the population mean. Now we turn our 
attention to how to use data to test scientific hypotheses. 
The statistical techniques used to perform such tests are 
called tests of significance; they yield the highly prized P 
value. We now develop procedures to test the hypothesis 
that, on the average, different treatments all affect some 
variable identically. Specifically, we will develop a proce-
dure to test the hypothesis that diet has no effect on the 
mean cardiac output of people living in a small town. Stat-
isticians call this hypothesis of no effect the null hypothesis.

The resulting test can be generalized to analyze data 
obtained in experiments involving any number of treat-
ments. In addition, it is the archetype for a whole class of 
related procedures known as analysis of variance.

  THE GENERAL APPROACH

To begin our experiment, we randomly select four groups 
of seven people each from a small town with 200 healthy 
adult inhabitants. All participants give informed consent. 
People in the control group continue eating normally; 
people in the second group eat only spaghetti; people in 
the third group eat only steak; and people in the fourth 
group eat only fruit and nuts. After 1 month, each person 
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Cardiac output (L/min)

4.0

Control

Fruit and nuts
Steak
Spaghetti

FIGURE 3-1. The values of 
cardiac output associated with all 
200 members of the population 
of a small town. Since diet does 
not affect cardiac output, the four 
groups of seven people each 
selected at random to participate 
in our experiment (control, 
spaghetti, steak, and fruit and 
nuts) simply represent four 
random samples drawn from a 
single population.

Spaghetti

Control

Means of samples

Fruit and nuts

Steak

FIGURE 3-2. An investigator 
cannot observe the entire 
population but only the four 
samples selected at random 
for treatment. This figure 
shows the same four groups 
of individuals as in Figure 3-1 
with their means and 
standard deviations as they 
would appear to the 
investigator. The question 
facing the investigator is: Are 
the observed differences due 
to the different diets or simply 
random variation? The figure 
also shows the collection of 
sample means together with 
their standard deviation, 
which is an estimate of the 
standard error of the mean.

Since the samples are drawn at random from a population 
with some variance, we expect the samples to have different 
means and standard deviations, but if our null hypothesis 
that the diet has no effect on cardiac output is true, the 
observed differences are simply due to random sampling.

Forget about statistics for a moment. What is it about 
different samples that leads you to believe that they are 
representative samples drawn from different populations? 
Figures 3-2, 3-3, and 3-4 show three different possible sets 
of samples of some variable of interest. Simply looking at 
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Sample 4

Sample 3

Sample 2

Sample 1

Means
of

samples

FIGURE 3-3. The four samples shown are identical to those in Figure 3-2 except that the 
variability in the mean values has been increased substantially. The samples now appear to 
differ from each other because the variability between the sample means is larger than one 
would expect from the variability within each sample. Compare the relative variability in mean 
values with the variability within the sample groups with that seen in Figure 3-2.

these pictures makes most people think that the four sam-
ples in Figure 3-2 were all drawn from a single population, 
while the samples in Figures 3-3 and 3-4 were not. Why? 
The variability within each sample, quantified with the 
standard deviation, is approximately the same. In Figure 
3-2, the variability in the mean values of the samples is 
consistent with the variability one observes within the 
individual samples. In contrast, in Figures 3-3 and 3-4, the 
variability among sample means is much larger than one 
would expect from the variability within each sample. 
Notice that we reach this conclusion whether all (Fig. 3-3) 
or only one (Fig. 3-4) of the sample means appear to differ 
from the others.

Now let us formalize this analysis of variability to ana-
lyze our diet experiment. The standard deviation or its 

square, the variance, is a good measure of variability. We 
will use the variance to construct a procedure to test the 
hypothesis that diet does not affect cardiac output.

Chapter 2 showed that two population parameters —  
the mean and standard deviation (or, equivalently, the 
variance) — completely describe a normally distributed 
population. Therefore, we will use our raw data to com-
pute these parameters and then base our analysis on 
their values rather than on the raw data directly. Since 
the procedures, we will now develop are based on these 
parameters they are called parametric statistical meth-
ods. Because these methods assume that the population 
from which the samples were drawn can be completely 
described by these parameters, they are valid only when 
the real population approximately follows the normal 
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*In fact, these methods make no assumption about the specific shape of 
the distribution of the underlying population; they are also called 
distribution-free methods. We will study these procedures in Chapters 5, 
8, 10, and 11.

Sample 1

Sample 2

Sample 3

Sample 4

Means
of

samples

FIGURE 3-4. When the mean of even one of the samples (sample 2) differs substantially from 
the other samples, the variability computed from within the means is substantially larger than 
one would expect from examining the variability within the groups.

distribution. Other procedures, called nonparametric 
statistical methods, are based on frequencies, ranks, or 
percentiles do not require this assumption.* Parametric 
methods generally provide more information about the 
treatment being studied and are more likely to detect a 
real treatment effect when the underlying population is 
normally distributed.

We will estimate the parameter population variance in 
two different ways: (1) The standard deviation or vari-
ance computed from each sample is an estimate of the 
standard deviation or variance of the entire population. 
Since each of these estimates of the population variance 

is computed from within each sample group, the esti-
mates will not be affected by any differences in the mean 
values of different groups. (2) We will use the values of 
the means of each sample to determine a second estimate 
of the population variance. In this case, the differences 
between the means will obviously affect the resulting esti-
mate of the population variance. If all the samples were, 
in fact, drawn from the same population (i.e., the diet had 
no effect), these two different ways to estimate the popu-
lation variance should yield approximately the same 
number. When they do, we will conclude that the samples 
were likely to have been drawn from a single population; 
otherwise, we will reject this hypothesis and conclude 
that at least one of the samples was drawn from a differ-
ent population. In our experiment, rejecting the original 
hypothesis would lead to the conclusion that diet does 
alter cardiac output.
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  �TWO DIFFERENT ESTIMATES OF 
THE POPULATION VARIANCE

How shall we estimate the population variance from the 
four sample variances? When the hypothesis that the diet 
does not affect cardiac output is true, the variances of each 
sample of seven people, regardless of what they ate, are 
equally good estimates of the population variance, so we 
simply average our four estimates of variance within the 
treatment groups:

Average variance in cardiac output within treat-
ment groups = 1/4 (variance in cardiac output of 
controls + variance in cardiac output of spaghetti 
eaters + variance in cardiac output of steak eaters + 
variance in cardiac output of fruit and nut eaters)

The mathematical equivalent is

s s s s s2
wit = + + +con spa st f

1

4
2 2 2 2( )

where s 2 represents variance. The variance of each sample 
is computed with respect to the mean of that sample. 
Therefore, the population variance estimated from within 
the groups, the within-groups variance s2

wit, will be the same 
whether or not diet altered cardiac output.

Next, we estimate the population variance from the 
means of the samples. Since we have hypothesized that all 
four samples were drawn from a single population, the 
standard deviation of the four sample means will approx-
imate the standard error of the mean. Recall that the stan-
dard error of the mean s

X  is related to the sample size n 

Sample 4

Sample 3

Sample 2

Sample 1

Means
of

samples

FIGURE 3-5. Four samples of seven members each drawn from the population shown in 
Figure 3-1. Note that the variability in sample means is consistent with the variability within 
each of the samples, F = 0.5.
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(in this case 7) and the population standard deviation s 
according to

σ σ
X

n
=

Therefore, the true population variance s2 is related to 
the sample size and standard error of the mean according to

σ σ2 2= n
X

We use this relationship to estimate the population vari-
ance from the variability between the sample means using

s ns
X

2
bet = 2

where s2
bet is the estimate of the population variance com-

puted from between the sample means and s
X is the stan-

dard deviation of the means of the four sample groups, 
the standard error of the mean. This estimate of the 

population variance, computed from between the group 
means is often called the between-groups variance.

If the null hypothesis that all four samples were drawn 
from the same population is true (i.e., that diet does not 
affect cardiac output), the within-groups variance and 
between-groups variance are both estimates of the same 
population variance and so should be about equal. There-
fore, we will compute the following ratio, called the F-test 
statistic:

F =

Population variance estimated
from sample means

Population variance estimated as
averrage of sample variances

F
s

s
=

2
bet
2
wit

A

B
4.03.5 4.53.01.0 1.5 2.0 2.5

Value of F
0.50

4.03.5 4.53.01.0 1.5 2.0 2.5
Value of F

0.50

C
4.03.01.0 2.00

0

FIGURE 3-6. (A) Values of F computed from 200 experiments involving four samples, each of 
size 7, drawn from the population in Figure 3-1. (B) We expect F to exceed 3.0 only 5% of the 
time when all samples were, in fact, drawn from a single population. (continued)
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A

B
4.03.5 4.53.01.0 1.5 2.0 2.5

Value of F
0.50
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FIGURE 3-6. (Continued) (C) Results of computing the F ratio for all possible samples drawn 
from the original population. The 5% of most extreme F values are shown darker than the rest. 
(D) The F distribution one would obtain when sampling an infinite population. In this case, the 
cutoff value for considering F to be “big” is that value of F that subtends the upper 5% of the 
total area under the curve.

4.03.01.0 2.00
0

0.5

1.0

D

Since both the numerator and the denominator are esti-
mates of the same population variance s2, F should be about 
s2/s2 = 1. For the four random samples in Figure 3-2, F is 
about equal to 1, we conclude that the data in Figure 3-2 are 
not inconsistent with the hypothesis that diet does not affect 
cardiac output and we continue to accept that hypothesis.

Now we have a rule for deciding when to reject the null 
hypothesis that all the samples were drawn from the same 
population:

If F is a big number, the variability between the sam-
ple means is larger than expected from the variability 
within the samples, so reject the null hypothesis that 
all the samples were drawn from the same population.

This quantitative statement formalizes the qualitative 
logic we used when discussing Figures 3-2 to 3-4. The F 
associated with Figure 3-3 is 68.0, and that associated with 
Figure 3-4 is 24.5.
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  WHAT IS A “BIG” F?

The exact value of F one computes depends on which 
individuals were drawn for the random samples. For 
example, Figure 3-5 shows yet another set of four samples 
of seven people drawn from the population of 200 people 
in Figure 3-1. In this example F = 0.5. Suppose we repeated 
our experiment 200 times on the same population. Each 
time we would draw four different samples of people 
and — even if the diet had no effect on cardiac out-
put — get slightly different values for F due to random 
variation. Figure 3-6A shows the result of this procedure, 
with the resulting F s rounded to one decimal place and 
represented with a circle; the two dark circles represent the 
values of F computed from the data in Figures 3-2 and 3-5. 
The exact shape of the distribution of values of F depend 
on how many samples were drawn, the size of each sam-
ple, and the distribution of the population from which the 
samples were drawn.

As expected, most of the computed F s are around 1 (i.e., 
between 0 and 2), but a few are much larger. Thus, even 
though most experiments will produce relatively small 
values of F, it is possible that, by sheer bad luck, one could 
select random samples that are not good representatives 
of the whole population. The result is an occasional rela-
tively large value for F even though the treatment had no 
effect. Figure 3-6B shows, however, that such values are 
unlikely. Only 5% of the 200 experiments (i.e., 10 experi-
ments) produced F values equal to or greater than 3.0. We 
now have a tentative estimate of what to call a “big” value 
for F. Since F exceeded 3.0 only 10 out of 200 times when 
all the samples were drawn from the same population, we 
might decide that F is big when it exceeds 3.0 and reject 
the null hypothesis that all the samples were drawn from 
the same population (i.e., that the treatment had no 
effect). In deciding to reject the hypothesis of no effect 
when F is big, we accept the risk of erroneously rejecting 
this hypothesis 5% of the time because F will be 3.0 or 
greater about 5% of the time, even when the treatment 
does not alter mean response.

When we obtain such a “big” F, we reject the original 
null hypothesis that all the means are the same and report 
P < .05. P < .05 means that there is less than a 5% chance 
of getting a value of F as big or bigger than the computed 
value if the original hypothesis were true (i.e., diet did not 
affect cardiac output).

The critical value of F should be selected not on the 
basis of just 200 experiments but all 1042 possible experi-

ments. Suppose we did all 1042 experiments and computed 
the corresponding F values, then plotted the results such 
as we did for Figure 3-6B. Figure 3-6C shows the results 
with grains of sand to represent each observed F value. The 
darker sand indicates the biggest 5% of the F values. Notice 
how similar it is to Figure 3-6B. This similarity should not 
surprise you, since the results in Figure 3-6B are just a ran-
dom sample of the population in Figure 3-6C. Finally, 
recall that everything so far has been based on an original 
population containing only 200 members. In reality, pop-
ulations are usually much larger, so that there can be many 
more than 1042 possible values of F. Often, there are essen-
tially an infinite number of possible experiments. In terms 
of Figure 3-6C, it is as if all the grains of sand melted 
together to yield the continuous line in Figure 3-6D.

Therefore, areas under the curve are analogous to the 
fractions of total number of circles or grains of sand in 
Figures 3-6B and 3-6C. Since the shaded region in Figure 
3-6D represents 5% of the total area under the curve, it 
can be used to compute that the cutoff point for a “big” F 
with the number of samples and sample size in this study 
is 3.01. This and other cutoff values that correspond to 
P < .05 and P < .01 are listed in Table 3-1.

To construct these tables, mathematicians have 
assumed four things about the underlying population that 
must be at least approximately satisfied for the tables to be 
applicable to real data:

•	 Each sample must be independent of the other samples.
•	 Each sample must be randomly selected from the popula-

tion being studied.
•	 The populations from which the samples were drawn must 

be normally distributed.*
•	 The variances of each population must be equal, even 

when the means are different, i.e., when the treatment has 
an effect.† 

When the data suggest that these assumptions do not 
apply, one ought not to use the procedure we just devel-
oped, the analysis of variance. Since there is one factor 
(the diet) that distinguishes the different experimental 

*This is another reason parametric statistical methods require data from 
normally distributed populations.
†You can formally compare two variances with an F test; the numerator 
and denominator degrees of freedom are one less than the number of 
observations in the variance in the numerator and denominator that are 
being compared.



  TABLE 3-1. Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface)

nd

nn

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 ∞

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208 6234 6261 6286 6302 6323 6334 6352 6361 6366

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 19.49 19.49 19.50 19.50
98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42 99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.57 8.56 8.54 8.54 8.53
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80 5.77 5.74 5.71 5.70 5.68 5.66 5.65 5.64 5.63
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.40 4.38 4.37 4.36
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05 9.96 9.89 9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.07 9.04 9.02

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.94 6.90 6.88

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.28 3.25 3.24 3.23
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15 6.07 5.98 5.90 5.85 5.78 5.75 5.70 5.67 5.65

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.94 2.93
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36 5.28 5.20 5.11 5.06 5.00 4.96 4.91 4.88 4.86

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93 2.90 2.86 2.82 2.80 2.77 2.76 2.73 2.72 2.71
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80 4.73 4.64 4.56 4.51 4.45 4.41 4.36 4.33 4.31

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77 2.74 2.70 2.67 2.64 2.61 2.59 2.56 2.55 2.54
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65 2.61 2.57 2.53 2.50 2.47 2.45 2.42 2.41 2.40
9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10 4.02 3.94 3.86 3.80 3.74 3.70 3.66 3.62 3.60

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54 2.50 2.46 2.42 2.40 2.36 2.35 2.32 2.31 2.30
9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86 3.78 3.70 3.61 3.56 3.49 3.46 3.41 3.38 3.36

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46 2.42 2.38 2.34 2.32 2.28 2.26 2.24 2.22 2.21
9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67 3.59 3.51 3.42 3.37 3.30 3.27 3.21 3.18 3.16

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13
8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51 3.43 3.34 3.26 3.21 3.14 3.11 3.06 3.02 3.00

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28 2.24 2.20 2.16 2.13 2.09 2.07 2.04 2.02 2.01
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.98 2.86 2.80 2.77 2.75

17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23 2.19 2.15 2.11 2.08 2.04 2.02 1.99 1.97 1.96
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16 3.08 3.00 2.92 2.86 2.79 2.76 2.70 2.67 2.65

18 4.41 3.55 3.16 2.93 2.77 3.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19 2.15 2.11 2.07 2.04 2.00 1.98 1.95 1.93 1.92
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07 3.00 2.91 2.83 2.78 2.71 2.68 2.62 2.59 2.57

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15 2.11 2.07 2.02 2.00 1.96 1.94 1.91 1.90 1.88
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00 2.92 2.84 2.76 2.70 2.63 2.60 2.54 2.51 2.49

nn = degrees of freedom for numerator; nd = degrees of freedom for denominator.

(continued)



  TABLE 3-1. Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface) (Continued)

nd

nn

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 ∞

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12 2.08 2.04 1.99 1.96 1.92 1.90 1.87 1.85 1.84
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.87 1.84 1.82 1.81
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07 2.03 1.98 1.93 1.91 1.87 1.84 1.81 1.80 1.78
7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.37 2.33 2.31

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02 1.98 1.94 1.89 1.86 1.82 1.80 1.76 1.74 1.73
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.33 2.27 2.23 2.31

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00 1.96 1.92 1.87 1.84 1.80 1.77 1.74 1.72 1.71
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99 1.95 1.90 1.85 1.82 1.78 1.76 1.72 1.70 1.69
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66 2.58 2.50 2.41 2.36 2.28 2.25 2.19 2.15 2.13

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97 1.93 1.88 1.84 1.80 1.76 1.74 1.71 1.68 1.67
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63 2.55 2.47 2.38 2.33 2.25 2.21 2.16 2.12 2.10

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96 1.91 1.87 1.81 1.78 1.75 1.72 1.69 1.67 1.65
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60 2.52 2.44 2.35 2.30 2.22 2.18 2.13 2.09 2.06

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94 1.90 1.85 1.80 1.77 1.73 1.71 1.68 1.65 1.64
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57 2.49 2.41 2.32 2.27 2.19 2.15 2.10 2.06 2.03

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93 1.89 1.84 1.79 1.76 1.72 1.69 1.66 1.64 1.62
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55 2.47 2.38 2.29 2.24 2.16 2.13 2.07 2.03 2.01

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91 1.86 1.82 1.76 1.74 1.69 1.67 1.64 1.61 1.59
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51 2.42 2.34 2.25 2.20 2.12 2.08 2.02 1.98 1.96

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89 1.84 1.80 1.74 1.71 1.67 1.64 1.61 1.59 1.57
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47 2.38 2.30 2.21 2.15 2.08 2.04 1.98 1.94 1.91

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87 1.82 1.78 1.72 1.69 1.65 1.62 1.59 1.56 1.55
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43 2.35 2.26 2.17 2.12 2.04 2.00 1.94 1.90 1.87



38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85 1.80 1.76 1.71 1.67 1.63 1.60 1.57 1.54 1.53
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40 2.32 2.22 2.14 2.08 2.00 1.97 1.90 1.86 1.84

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84 1.79 1.74 1.69 1.66 1.61 1.59 1.55 1.53 1.51
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37 2.29 2.20 2.11 2.05 1.97 1.94 1.88 1.84 1.81

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82 1.78 1.73 1.68 1.64 1.60 1.57 1.54 1.51 1.49
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35 2.26 2.17 2.08 2.02 1.94 1.91 1.85 1.80 1.78

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81 1.76 1.72 1.66 1.63 1.58 1.56 1.52 1.50 1.48
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32 2.24 2.15 2.06 2.00 1.92 1.88 1.82 1.78 1.75

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80 1.75 1.71 1.65 1.62 1.57 1.54 1.51 1.48 1.46
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30 2.22 2.13 2.04 1.98 1.90 1.86 1.80 1.76 1.72

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79 1.74 1.70 1.64 1.61 l.56 1.53 1.50 1.47 1.45
7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28 2.20 2.11 2.02 1.96 1.88 1.84 1.78 1.73 1.70

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78 1.74 1.69 1.63 1.60 1.55 1.52 1.48 1.46 1.44
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26 2.18 2.10 2.00 1.94 1.86 1.82 1.76 1.71 1.68

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75 1.70 1.65 1.59 1.56 1.50 1.48 1.44 1.41 1.39
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20 2.12 2.03 1.93 1.87 1.79 1.74 1.68 1.63 1.60

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72 1.67 1.62 1.56 1.53 1.47 1.45 1.40 1.37 1.35
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15 2.07 1.98 1.88 1.82 1.74 1.69 1.62 1.56 1.53

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70 1.65 1.60 1.54 1.51 1.45 1.42 1.38 1.35 1.32
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11 2.03 1.94 1.84 1.78 1.70 1.65 1.57 1.52 1.49

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68 1.63 1.57 1.51 1.48 1.42 1.39 1.34 1.30 1.28
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06 1.98 1.89 1.79 1.73 1.64 1.59 1.51 1.46 1.43

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.87 1.84 1.78 1.73 1.66 1.61 1.56 1.50 1.46 1.39 1.37 1.32 1.28 1.25
6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 2.23 2.15 2.03 1.95 1.86 1.76 1.70 1.61 1.56 1.48 1.42 1.38

∞ 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57 1.52 1.46 1.40 1.35 1.28 1.24 1.17 1.11 1.00
6.63 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87 1.79 1.69 1.59 1.52 1.41 1.36 1.25 1.15 1.00

nn = degrees of freedom for numerator; nd = degrees of freedom for denominator.
Reproduced from Snedecor GW, Cochran WG. Statistical Methods, 8th ed. Copyright © 1989. Reproduced with the permission of John Wiley & Sons, Inc.
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groups, this is known as a single factor or one way analysis 
of variance. Other forms of analysis of variance (not dis-
cussed here) can be used to analyze experiments in which 
there is more than one experimental factor.

Since the distribution of possible F values depends on 
the size of each sample and number of samples under con-
sideration, so does the exact value of F which corresponds 
to the 5% cutoff point. For example, in our diet study, the 
number of samples was 4 and the size of each sample was 
7. This dependence enters into the mathematical formulas 
used to determine the value at which F gets “big” as two 
parameters known as degree-of-freedom parameters, often 
denoted as n (Greek “nu”). For this analysis, the between-
groups degrees of freedom (also called the numerator 
degrees of freedom because the between-groups variance 
is in the numerator of F) is defined to be the number of 
samples m minus 1, or nn = m – 1. The within-groups (or 
denominator) degrees of freedom is defined to be the 
number of samples times 1 less than the size of each sam-
ple, nd = m(n – 1). For our diet example, the numerator 
degrees of freedom are 4 – 1 = 3, and the denominator 
degrees of freedom are 4(7 – 1) = 24. Degrees of freedom 
often confuse and mystify people who are trying to work 
with statistics. They simply represent the way number of 
samples and sample size enter the mathematical formulas 
used to construct all statistical tables.

  CELL PHONES AND SPERM

We now have the tools needed to form conclusions using 
statistical reasoning. We will examine examples, all based 
on results published in the medical literature. I have exer-
cised some literary license with these examples for two rea-
sons: (1) Medical and scientific authors usually summarize 
their raw data with descriptive statistics (like those devel-
oped in Chapter 2) rather than including the raw data. As a 
result, the “data from the literature” shown in this chapter —  
and the rest of the book — are usually my guess at what the 
raw data probably looked like based on the descriptive sta-
tistics in the original article.* (2) The analysis of variance as 
we developed it requires that each sample contain the same 
number of members. This is often not the case in reality, so 
I adjusted the sample sizes in the original studies to meet 
this restriction. We later generalize our statistical methods 

to handle experiments with different numbers of individu-
als in each sample or treatment group.

An Early Study
Cell phones have become ubiquitous all over the world, 
exposing people to radiofrequency radiation. The phones 
are almost always held close to the body, exposing poten-
tially sensitive tissues to relatively high levels of this radia-
tion. Based on an earlier small study suggesting declining 
levels of rapidly moving spermatozoa in a small number of 
cell phone users, Imre Fejes and colleagues† obtained semen 
samples from two groups of young men 30.8 ± 4.4 (stan-
dard deviation, range 17 to 41) years old who were patients 
at an infertility clinic: A low use group who used cell phones 
less than 15 minutes/day and a high use group who used 
their phones for over 60 minutes/day. (They collected their 
data between November 2002 and March 2004, when cell 
phone use was probably lower than in subsequent years.)

Because this is an observational study, Fejes and col-
leagues tried to minimize the effects of confounding vari-
ables by excluded men with conditions that could affect 
sperm function, including smoking (but only more than 
10 cigarettes/day), regular alcohol consumption, drug 
abuse, illness, reproductive or testicular abnormalities, 
abnormal hormone levels, or genital tract infection.

Figure 3-7 shows the percentage of rapidly moving 
sperm for each individual. Figure 3-7 shows that for the 61 
men in the low use group the mean percentage of rapidly 
mobile sperm was 49% and for the 61 men in the high use 
group it was 41%. The standard deviations were 21% and 
22%, respectively.

How consistent are these data with the null hypothesis 
that rapid sperm mobility does not differ in men who use 
their cell phones less than 15 minutes/day compared to 
men who use them more than 60 minutes/day? In other 
words, how likely are the differences in the two samples of 
men depicted in Figure 3-7 to be due to random sampling 
rather than the difference in cell phone usage?

To answer this question, we perform an analysis of 
variance.

We begin by estimating the within-groups variance by 
averaging the variances of the two samples of men. Since 
this estimate of the underlying population variance is 

*Since authors often failed to include a complete set of descriptive statis-
tics, I had to simulate them from the results of their hypothesis tests.

†Fejes I, Závacki Z, Szöllosi J, Koloszár S, Daru J. Kovács L, Pál A. Is there 
a relationship between cell phone use and semen quality? Arch Androl. 
2005;51:385–393.
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FIGURE 3-7. Results of a study comparing fraction of sperm with rapid motility 
associated with low and high intensity cell phone use. The fraction of rapid motility for 
each man’s sperm is indicated by a circle at the appropriate fraction of rapidly motile 
sperm. (Such a plot is called a histogram of the data. The mean fraction of rapidly 
motile sperm in men with lower cell phone use (49%) is higher than for the men with 
high cell phone use (41%). The statistical question is whether this difference is due to 
random sampling or due to an actual effect of cell phone use. The horizontal lines show 
one standard deviation on either side of the means (21% and 22%, respectively).

computed from the variances of the separate samples, does 
not depend on whether the means are different or not:
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We then go on to compute the between-groups variance 
assuming that the null hypothesis is correct and the differ-
ences between the observed means is due to random sam-
pling variation, not any systematic effects of the level of cell 
phone usage. The first step is to estimate the standard error 
of the mean by computing the standard deviation of the 
two sample means. The mean of the two sample means is
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Therefore, the standard deviation of the sample means is
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Since the sample size n is 61, the estimation of the pop-
ulation variance from between the groups is 
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Finally, the ratio of these two different estimates of the 
underlying population variance (assuming that the null 
hypothesis is correct) is
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The degrees of freedom for the numerator are the 
number of sample groups minus 1, so nn = 2 – 1 = 1, and 
the degrees of freedom for the denominator are the num-
ber of groups times one less than the sample size of each 
group, so nd = 2(61 – 1) = 120. Look in the column headed 
1 and the row headed 120 in Table 3-1. The resulting entry 
indicates that there is less than a 5% chance of F exceeding 
3.92 by chance if, in fact, the null hypothesis that cell 
phone use did not affect mean sperm mobility was true. 
We therefore concluded that the value of F associated with 
our observations is “big” and reject the null hypothesis 
that there is no difference in sperm mobility in the two 
groups of men (P < .05) shown in Figure 3-7.

By rejecting the null hypothesis of no difference, we con-
clude that there are different levels of rapid sperm motility 
associated with higher levels of cell phone use, with the 
heavier users having fewer sperm with rapid motility.
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A Better Control Group
One problem with Fejes and colleagues’ study is that it 
did not include a completely unexposed (clean) control 
group of men who did not use cell phones at all. Ashok 
Agarwal and colleagues* avoided this problem when they 
did a similar observational study of men aged 32 ± 6 
(standard deviation) years old who were attending their 
infertility clinic. They also had stricter exclusion criteria 
than the earlier study. They excluded anyone with a his-
tory of smoking or other tobacco use, alcohol use, dia-
betes, high blood pressure, or other diseases. Unlike the 
study just discussed, they measured the fraction of 
sperm that exhibited any motility (as opposed to rapid 
motility). Table 3-2 shows the data. As before, the ques-
tion is whether cell phone use is associated with changes 
in sperm motility.

To answer this question, we perform an analysis of 
variance to test the null hypothesis that the level of cell 
phone use is not associated with differences in sperm 
motility among the four groups.

As before, we begin by estimating the within-groups 
variance by averaging the variances of the four samples 
of men:
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To compute the between-groups variance estimate on 
the assumption that the null hypothesis is true, so that all 
the observed means are simply estimating the same 

underlying (constant) population mean in sperm motility. 
The mean of the four sample means is
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4
( )control low medium high

	
X = + + + =1

4
68 65 54 45 58( ) %

The standard deviation of the m = 4 sample means is
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Since the sample size n is 40, the estimation of the pop-
ulation variance from between the groups is 
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To test whether these two estimates of the underlying 
population variance are consistent with each other under 
the assumption that the null hypothesis is correct (i.e., 
that sperm motility is not detectably different between the 
different cell phone sample groups), we compute
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.
.

The numerator degrees of freedom are nn = m – 1 = 4 – 1 
= 3 and denominator degrees of freedom are nd = m(n – 1) 
= 4(40 – 1) = 156. Table 3-1 does not have an entry for nd = 
156, but the critical value for P < .01 will be between 3.95, 
the value corresponding to 120 denominator degrees of 
freedom and 3.78, the value for an infinite number of 
degrees of freedom. The value of F associated with the data 

*Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone 
usage on semen analysis in men attending infertility clinic: an observa-
tional study. Fertil Steril. 2008;89:124–128.

  TABLE 3-2. Sperm Motility (%)

Observed Cell Phone Use Number of Subjects (n) Mean Standard Deviation

Control (no cell phone use) 40 68 6
Low use (<2 h/d) 40 65 8
Medium use (2 to 4 h/d) 40 54 11
High use (>4 h/d) 40 45 16
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exceeds this range, so, as before, we reject the null hypoth-
esis that sperm motility is not related to cell phone use. 

An important question, however, remains: Which of the 
four sample groups differed from the others? Is any cell 
phone use associated with a reduction in sperm motility 
or is there evidence of the threshold for an effect? Does the 
effect increase with how much a man used the cell phone? 
We will have to defer answering these questions until we 
develop additional statistical tools, the t test and the associ-
ated multiple comparison procedures, in Chapter 4.

An Experimental Study
As discussed in Chapter 2, the strength of the conclusions 
about cause and effect are always limited in observational 
studies because one can never totally exclude the possibility 
that there is some unobserved confounding variable that is 
influencing the results which makes it appear that there is a 
relationship between the conditions being studied and the 
outcome variable when no such relationship exists. One can 
draw much stronger conclusions in an experiment in which 
the investigator randomly assigns experimental subjects to 
the different treatment conditions, which he or she controls. 
In such a case, the only systematic difference between the 
different experimental groups is the presence or absence of 
the condition being studied.

Motivated in part by the two observational studies just 
discussed, Nader Salama and colleagues* conducted an 
experiment in which they exposed adult male rabbits to cell 
phone radiation for 8 hours a day for 12 weeks. The rabbits 
were exposed to the cell phones by being housed during the 
8 hour exposure time in a specially designed cage which kept 
the rabbits’ testes positioned over the cell phone during the 
whole time. (They were housed in larger cages the rest of the 
time.) Because being in such a constrained environment 
might prove stressful to the rabbit, which could, in turn, 
affect sperm production and function — a confounding 
variable — Salama and coworkers had two control groups: a 
stress control, where the rabbit was housed in the same spe-
cially designed cage as the cell phone-exposed rabbits, but 
without the cell phone, and an ordinary control in which the 
rabbit was house in their usual cage all the time. They studied 
24 rabbits, randomizing 8 to each experimental condition.

The data and associated analysis of variance are pre-
sented in Box 3-1. Notice that while the average values are 

roughly comparable to the values observed in the two 
human studies (compare the data in Box 3-1 with that in 
Fig. 3-7 and Table 3-2), the standard deviations are smaller 
in the experimental study using rabbits. This difference is 
probably because all the rabbits were the same strain (New 
Zealand White rabbits) and same age, whereas the human 
observational studies involved men with a range of ages 
and other differences. Indeed, one benefit of doing such 
an experimental study is to obtain this standardization 
and the associated reduction in between-individual ran-
dom differences. At the same time, the fact that the obser-
vational studies used real people makes the results more 
relevant in the real world. This tradeoff between a tightly 
controlled subject population and generality in the real 
world is a common tension in most biomedical and clini-
cal research.

There is a statistically significant difference between the 
treatment groups (P < .01). (Resolving whether all three 
groups are different from each other or whether there is 
some subgrouping of responses will have to wait until we 
develop procedures for multiple comparison testing in 
Chapter 4.) Because the rabbits were the same, randomly 
assigned to treatment groups, and except for the presence 
of the cell phone and cage situation, treated identically, we 
can confidently conclude that the experimental condition 
affected the sperm motility.

While one always has to be cognizant of cross-species 
comparisons, the fact that two independent observational 
studies of men done under different conditions and an 
experimental study — albeit using rabbits rather than 
people — substantially strengthens a conclusion that the 
cell phone exposure is causing the reduction in sperm 
function. Combining different sources of information 
with different strengths and weaknesses to identify points 
of concordance and disagreement is the key to drawing 
conclusions about causality, particularly when a substan-
tial part of the evidence comes from observational studies.

  UNEQUAL SAMPLE SIZE

We have developed analysis of variance for the case of 
equal sample sizes because doing so allowed us to develop 
and present the formulas to compute F in a way that 
makes it easy to understand the underlying concepts. It is 
also possible to do an analysis of variance when the sam-
ple sizes are not the same, although the formulas and 
notation are much more opaque in terms of what they 
mean. Appendix A gives these computational formulas 
and Box 3-2 illustrates how to use them.

*Salama N, Kishimoto T, Kanayama H. Effects of exposure to a mobile 
phone on testicular function and structure in adult rabbit. Int J Androl. 
2010;33:88–94.



42 C hap t e r  3

Rabbit Sperm Motility after 12 Weeks (%)

Experimental Condition Sample Size (n) Mean Standard Deviation
Ordinary control 8 72 3.2
Stress control 8 61 2.2
Cell phone exposure 8 50 2.5

The within-groups variance is computed by averaging the three sample variances:
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The between-groups variance estimate begins with computing the mean in sperm motility in the  
three samples,
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Since the sample size of each group, n, is 8, the between-groups variance estimate is 
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We compare this to the critical value of F for nn = m – 1 = 3 – 1 = 2 numerator and nd = m(n – 1) = 3(8 – 1) = 
21 denominator degrees of freedom. From Table 3-1, the critical value for P < .01 is 5.78; the value associated 
with our data exceeds this value, so we conclude that there is a statistically significant difference between the 
three treatment groups.  

Box 3-1 • Effect of Cell Phone Radiation on Rabbit Sperm Motility



Seeing onscreen smoking in movies is a major stimulus for youth and young adults to start smoking. It also stimu-
lates smoking behavior among people who are already smokers. Smoking is a highly practiced motor skill that often 
occurs automatically without conscious awareness. There are certain areas of the brain (called the frontopatietal 
network) that is activated when people observe, plan, or imitate actions. To investigate whether this action observa-
tion would be preferentially activated in smokers when watching smoking in a movie, Dylan Wagner and colleagues* 

did functional MRI (magnetic resonance imaging) on the brains of 17 smokers and 15 nonsmokers and measured 
the extent to which blood flow increased in brain regions in the frontoparietal network. (The units are arbitrary.) 

Here are the data:

Sample Size (n) Mean Standard Deviation
Smokers 17 .65 .20
Nonsmokers 15 .22 .15

To test the null hypothesis that the levels of blood flow are no different among smokers and nonsmokers, we 
compute an analysis of variance using the formulae in Appendix A.

We first compute the total sample size by adding up the sample sizes:

N n n nt= = + = + =∑ smokers nonsmokers 17 15 32

Next, we estimate the within-groups variance estimate based on a weighted average of the variances within the 
two sample groups:
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The degrees of freedom associated with the within-groups variance estimate is
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The formula for the between-groups variance estimate is
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From Table 3-1, this value of F exceeds the critical value of 7.56 that defines the largest 1% of values under the 
null hypothesis with 1 numerator and 30 denominator degrees of freedom, so we reject the null hypothesis of no 
difference, and conclude that seeing images of smoking in movies stimulates the brain regions associated with 
repetitive actions in smokers more than nonsmokers (P < .01). 

Box 3-2 • Effect of Seeing Smoking in Movies on Smokers’ Brains

*Wagner DD, Dal Cin S, Sargent JD, Kelley WM, Heatherton TF. Spontaneous action representation in smokers when watching movie characters 
smoke. J Neurosci. 2001;31:894-898.
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  TWO WAY ANALYSIS OF VARIANCE

The analysis of variance we have been discussing in this 
chapter is more precisely called one way or single factor 
analysis of variance, because the different treatment 
groups are defined by one factor (such as diet or level of 
cell phone use). It turns out that this one way analysis of 
variance is just the simplest case of much more general 
analysis of variance, in which it is possible to consider the 
effects of two (or more) factors acting simultaneously.

To illustrate the next level of complexity in experimen-
tal design, let us return to the diet example from the 
beginning of this chapter. In the original example, we 
evaluated the effects of a single factor, diet, on cardiac out-
put of people. Table 3-3 shows the layout for the data from 
this study. A more sophisticated design would be to simul-
taneously consider the effects of diet and gender on car-
diac output, using a two way (or two factor) design in 
Table 3-4. Based on these data, we could use a generaliza-
tion of the analysis of variance presented in this chapter to 
test three null hypotheses using the resulting data:

1.	 Diet has no effect on cardiac output, controlling for 
gender.

2.	 Gender has no effect on cardiac output, controlling 
for diet.

3.	 The effect of diet on cardiac output is the same regard-
less of gender and vice versa.

The third null hypothesis states that there is no interac-
tion between the two main effects, diet and gender. A sig-
nificant interaction would mean that the effects of diet are 
different for different genders.

While we will not go into the details of how to compute 
and interpret two way (and higher order) analyses of 
variance,* the overall principles are the same as those dis-
cussed in this chapter.

We now turn our attention to developing the t test and 
adapting it to do multiple comparisons between pairs of 
means following a significant analysis of variance.

  PROBLEMS

3-1 In order to study the cellular changes in people with 
tendencies to develop diabetes, Kitt Petersen and her col-
leagues† studied the ability of muscle cells in normal chil-
dren and insulin-resistant children to convert glucose into 
adenosine triphosphate (ATP), the “energy molecule” 
muscle cells produce to power contraction. The body pro-
duces insulin to permit cells to process glucose, and muscle 
cells of insulin-resistant people do not respond normally 
to process glucose. They measured the amount of ATP 
produced per gram of muscle tissue after giving the study 
participants a dose of glucose. Persons in the control group 
produced 7.3 μmol/g of muscle/min of ATP (standard 
deviation 2.3 μmol/g of muscle/min) and insulin-resistant 
persons produced 5.0 μmol/g of muscle/min (standard 
deviation 1.9 μmol/g of muscle/min). There were 15 chil-
dren in each test group. Is there a difference in the mean 
rate of ATP production in these two groups of people?

3-2 It was once generally believed that infrequent and 
short-term exposure to pollutants in tobacco, such as car-
bon monoxide, nicotine, benzo[a]pyrene, and oxides of 
nitrogen, will not permanently alter lung function in 
healthy adult nonsmokers. To investigate this hypothesis, 
James White and Herman Froeb‡ measured lung function 
in cigarette smokers and nonsmokers during a “physical 
fitness profile” at the University of California, San Diego. 
They measured how rapidly a person could force air from 

  TABLE 3-3. Experimental Design for One Way Analysis of Variance

Diet

Control Spaghetti Steak Fruit and Nuts

data data data data

*See Glantz S, Slinker B. Primer of Applied Regression and Analysis of Vari-
ance. 2nd ed. New York: McGraw-Hill; 2001 for details on how to analyze 
two way and higher-order analyses of variance.

†Petersen K, et. al. Impaired mitochondrial activity in the insulin-resis-
tant offspring of patients with type 2 diabetes. N Engl J Med. 2004;
350:664–671.
‡White J, Froeb H. Small-airways dysfunction in nonsmokers chronically 
exposed to tobacco smoke. N Engl J Med. 1980;302:720–723.
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  TABLE 3-4. Experimental Design for Two Way Analysis of Variance

Gender

Diet

Control Spaghetti Steak Fruit and Nuts

Male data data data data

Female data data data data

the lungs (mean forced midexpiratory flow). Reduced 
forced midexpiratory flow is associated with small-air-
ways disease of the lungs. Table 3.5 shows the data for the 
women that White and Froeb tested. Is there evidence that 
the presence of small-airways disease, as measured by this 
test, is different among the different experimental groups?

3-3 The stair climb power test is a functional test used 
among older people to measure leg muscle power. To 
assess whether this test could be used to assess leg muscle 
power in people with chronic obstructive pulmonary dis-
ease (COPD) Marc Roig and colleagues* measured the 
power delivered by people with mild-to-severe COPD with 
age and sex matched controls with no disease. Subjects 
were told to climb 10 stairs as quickly as they could and the 
power computed as the vertical velocity (the gain in height 
of the 10 stairs divided by the length of time it took the 
subject to climb the stairs) times the subject’s weight. The 
21 people in the control group developed a mean of 378 
watts (standard deviation 121 watts) and the 21 people 
with COPD developed 266 watts (standard deviation 81 
watts). Test the hypothesis that there is no difference in the 
amount of power these two groups of people developed.

*Roig M, et al. Associations of the Stair Climb Power Test with muscle 
strength and functional performance in people with chronic obstructive 
pulmonary disease: a cross-sectional study. Phys Ther. 2010;90:1774–1782.

  TABLE 3-5. Mean Forced Midexpiratory Flow (L/s)

Group Sample Size (n) Mean Standard Deviation

Nonsmokers
  Worked in smoke-free environment 200 3.17 0.74
  Worked in smoky environment 200 2.72 0.71
Light smokers 200 2.63 0.73
Moderate smokers 200 2.29 0.70
Heavy smokers 200 2.12 0.72

3-4 In the study of cell phone use and sperm function, the 
investigators also measured sperm viability for the differ-
ent categories of cell phone users. Is there a difference in 
viability among these groups? (See Table 3-6.)

3-5 Men and women differ in risk of spinal fracture. Men 
are at increased risk for all types of bone fractures until 
approximately 45 years of age, an effect probably due to 
the higher overall trauma rate in men during this time. 
However, after age 45, women are at increased risk for 
spinal fracture, most likely due to age-related increases in 
osteoporosis, a disease characterized by decreased bone 
density. S. Kudlacek and colleagues† wanted to investigate 
the relationship between gender and bone density in a 
group of older adults who have had a vertebral bone frac-
ture. Their data are presented in Table 3-7. Are there dif-
ferences in vertebral bone density between similarly aged 
men and women who have had a vertebral bone fracture?

3-6 Burnout is a term that loosely describes a condition of 
fatigue, frustration, and anger manifested as a lack of 

†Kudlacek S, et al. Gender differences in fracture risk and bone mineral 
density. Maturitas, 2000;36:173–180.
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  TABLE 3-6. Sperm Viability (%)

Observed Cell Phone Use Sample Size (n) Mean Standard Deviation

Control (no cell phone use) 40 72  7
Low use (<2 h/d) 40 68  9
Medium use (2 to 4 h/d) 40 58 11
High use (>4 h/d) 40 47 17

  TABLE 3-7. Vertebral Bone Density (mg/cm3)

Group Sample Size (n) Mean SEM

Women with bone fractures 50 70.3 2.55
Men with bone fractures 50 76.2 3.11

enthusiasm for and feeling of entrapment in one’s job. 
This situation can arise when treating people who have 
serious diseases. In recent years, AIDS has joined the list 
of diseases that may have a negative impact on profession-
als serving people suffering from this disease. To investi-
gate whether there were differences in burnout associated 
with caring for people who have AIDS compared with 
other people who have serious diseases, J. López-Castillo 
and coworkers* administered the Maslach Burnout Inven-
tory questionnaire to health professionals working in four 
clinical units: infectious disease, hemophilia, oncology, 
and internal medicine in Spain (see Table 3-8). (Ninety 
percent of the people in the infectious disease and 60% of 
the people in the hemophilia unit were HIV positive.) Are 
there differences in burnout scores between health profes-
sionals working in these different units?

3-7 High doses of estrogen interfere with male fertility in 
many animals, including mice. However, there may be sig-
nificant differences in the response to estrogen in different 
mouse strains. To compare estrogen responsiveness in dif-
ferent strains of mice, Spearow and colleagues† implanted 

capsules containing 1 μg of estrogen into four different 
strains of juvenile male mice. After 20 days, they measured 
their testicular weight, shown in Table 3-9. Is there suffi-
cient evidence to conclude that any of these strains differ 
in response to estrogen? (The formulas for analysis of 
variance with unequal sample sizes are in Appendix A.)

3-8 Several studies suggest that schizophrenic patients have 
lower IQ scores measured before the onset of schizophre-
nia (premorbid IQ) than would be expected based on fam-
ily and environmental variables. These deficits can be 
detected during childhood and increase with age. Cathe-
rine Gilvarry and colleagues‡ investigated whether this was 
also the case with patients diagnosed with affective psycho-
sis, which encompasses schizoaffective disorder, mania, and 
major depression. In addition, they also wanted to assess 
whether any IQ deficits could be detected in first-degree 
relatives (parents, siblings, and children) of patients with 
affective psychosis. They administered the National Adult 
Reading Test (NART), which is an indicator of premorbid 
IQ, to a set of patients with affective psychosis, their first-
degree relatives, and a group of normal subjects without 
any psychiatric history. Gilvarry and colleagues also  

*López-Castillo J, et al. Emotional distress and occupational burnout in 
health care professionals serving HIV-infected patients: a comparison 
with oncology and internal medicine services. Psychother Psychosom. 
1999;68:348–356.
†Spearow JL, et al. Genetic variation in susceptibility to endocrine disrup-
tion by estrogen in mice. Science. 1999;285:1259–1261.

‡Gilvarry C, et al. Premorbid IQ in patients with functional psychosis and 
their first-degree relatives. Schizophr Res. 2000;41:417–429.
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  TABLE 3-8. The Maslach Burnout Inventory Questionnaire

Infectious Disease Hemophilia Oncology Internal Medicine

Mean 46.1 35.0 44.4 47.9
Standard deviation 16.1 11.1 15.6 18.2
Sample size (n) 25 25 25 25

  TABLE 3-9. Testes Weight (mg)

Mouse Strain Sample Size (n) Mean SEM

CD-1 13 142 6
S15/Jls 16 82 3
C17/Jls 17 60 5
B6 15 38 3

  TABLE 3-10. National Adult Reading Test Score

Group Sample Size (n) Mean Standard Deviation

Controls 50 112.7 7.8
Psychotic patients (no obstetric complications) 28 111.6 10.3
Relatives of psychotic patients (no obstetric complications) 25 114.3 12.1
Psychotic patients with obstetric complications 13 110.4 10.1
Relatives of psychotic patients with obstetric complications 19 116.4 8.8

considered whether there was an obstetric complication 
(OC) during the birth of the psychotic patient, which is 
another risk factor for impaired intellectual development. 
Is there any evidence that NART scores differ among these 
groups of people (see Table 3-10)? (The formulas for 
analysis of variance with unequal sample sizes are in 
Appendix A.)
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4
The Special Case of 
Two Groups: The t Test

had an effect when the evidence does not support this 
conclusion.

  THE GENERAL APPROACH

Suppose we wish to test a new drug that may be an effective 
diuretic. We assemble a group of 10 people and divide 
them at random into two groups, a control group that 
receives a placebo and a treatment group that receives the 
drug; then we measure their urine production for 24 hours. 
Figure 4-1A shows the resulting data. The average urine 
production of the group receiving the diuretic is 240 mL 
higher than that of the group receiving the placebo. Simply 
looking at Figure 4-1A, however, does not provide very 
convincing evidence that this difference is due to anything 
more than random sampling.

Nevertheless, we pursue the problem and give the pla-
cebo or drug to another 30 people to obtain the results 
shown in Figure 4-1B. The mean responses of the two 
groups of people as well as the standard deviations are 
almost identical to those observed in the smaller samples 
shown in Figure 4-1A. Even so, most observers are more 
confident in claiming that the diuretic increased average 
urine output from the data in Figure 4-1B than the data in 
Figure 4-1A, even though the samples in each case are 
good representatives of the underlying population. Why?

As the sample size increases, most observers become 
more confident in their estimates of the population 
means so they can begin to discern a difference between 

As we have just seen in Chapter 3, many investigations 
require comparing only two groups. In addition, as the 
last example in Chapter 3 illustrated, when there are 
more than two groups, analysis of variance only allows 
you to conclude that the data are not consistent with 
the hypothesis that all the samples were drawn from a 
single population. It does not help you decide which 
one or ones are most likely to differ from the others. To 
answer these questions, we now develop a procedure 
that is specifically designed to test for differences in two 
groups: the t test or Student’s t test. While we will 
develop the t test from scratch, we will eventually show 
that it is just a different way of doing an analysis of 
variance. In particular, we will see that F = t 2 when 
there are two groups.

The t test is the most common statistical procedure in 
the medical literature; you can expect it to appear in 
more than half the papers you read in the general medi-
cal literature. In addition to being used to compare two 
group means, it is widely applied incorrectly to compare 
multiple groups, by doing all the pairwise comparisons, 
for example, by comparing more than one intervention 
with a control condition or the state of a patient at dif-
ferent times following an intervention. As we will see, 
this incorrect use increases the chances of rejecting the 
null hypothesis of no effect above the nominal level, say 
5%, used to select the cutoff value for a “big” value of the 
test statistic t. In practical terms, this boils down to 
increasing the chances of reporting that some therapy 
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the people taking the placebo or the drug. Recall that 
the standard error of the mean quantifies the uncer-
tainty of the estimate of the true population mean 
based on a sample. Furthermore, as the sample size 
increases, the standard error of the mean decreases 
according to

σ σ
X

=
n

where n is the sample size and s is the standard deviation 
of the population from which the sample was drawn. As 
the sample size increases the uncertainty in the estimate 
of the difference of the means between the people who 
received placebo and the patients who received the drug 
decreases relative to the difference of the means. As a 
result, we become more confident that the drug actually 
has an effect. More precisely, we become less confident in 
the hypothesis that the drug had no effect, in which case 

the two samples of patients could be considered two sam-
ples drawn from a single population.

To formalize this logic, we will examine the ratio

t = Difference in sample means

Standard error oof difference of sample means

When this ratio is small we will conclude that the 
data are compatible with the hypothesis that both sam-
ples were drawn from a single population. When this 
ratio is large we will conclude that it is unlikely that the 
samples were drawn from a single population and 
assert that the treatment (e.g., the diuretic) produced 
an effect.

This logic, while differing in emphasis from that used 
to develop the analysis of variance, is essentially the same. 
In both cases, we are comparing the relative magnitude of 
the differences in the sample means with the amount of 

Urine production (mL/d)

Urine production (mL/d)

Placebo

Drug

Drug n = 20

n = 20

n = 5

n = 5

Placebo

A

B

FIGURE 4-1. (A) Results of a study in which five 
people were treated with a placebo and five people 
were treated with a drug thought to increase daily 
urine production. On the average, the five people who 
received the drug produced more urine than the 
placebo group. Are these data convincing evidence 
that the drug is an effective diuretic? (B) Results of a 
similar study with 20 people in each treatment group. 
The means and standard deviations associated with 
the two groups are similar to the results in panel A. 
Are these data convincing evidence that the drug  
is an effective diuretic? If you changed your mind,  
why did you do it?
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variability that would be expected from looking within 
the samples.

To compute the t ratio we need to know two things: 
the difference of the sample means and the standard 
error of this difference. Computing the difference of the 
sample means is easy; we simply subtract. Computing an 
estimate for the standard error of this difference is a bit 
more involved. We begin with a slightly more general 
problem, that of finding the standard deviation of the 
difference of two numbers drawn at random from the 
same population.

  �THE STANDARD DEVIATION OF 
A DIFFERENCE OR A SUM

Figure 4-2A shows a population with 200 members. The 
mean is 0, and the standard deviation is 1. Now, suppose 
we draw two samples at random and compute their differ-
ence. Figure 4-2B shows this result for the two members 
indicated by solid circles in Figure 4-2A. Drawing five 
more pairs of samples (indicated by different symbols in 
Fig. 4-2A) and computing their differences yields the cor-
responding shaded points in Figure 4-2B. Note that there 
seems to be more variability in the differences of the sam-
ples than in the samples themselves. Figure 4-2C shows 
the results of Figure 4-2B, together with the results of 

drawing another 50 pairs of numbers at random and 
computing their differences. The standard deviation of 
the population of differences is about 40% larger than the 
standard deviation of the population from which the sam-
ples were drawn.

In fact, it is possible to demonstrate mathematically 
that the variance of the difference (or sum) of two variables 
selected at random equals the sum of the variances of the two 
populations from which the samples were drawn. In other 
words, if X is drawn from a population with standard 
deviation s X and Y is drawn from a population with stan-
dard deviation sY , the distribution of all possible values 
of X − Y (or X + Y ) will have variance

σ σ σ σX Y X Y X Y− += +2 2 2 2=

This result should seem reasonable to you because 
when you select pairs of values that are on opposite (the 
same) sides of the population mean and compute their 
difference (sum), the result will be even farther from the 
mean. Returning to the example in Figure 4-2, we can 
observe that both the first and second numbers were 
drawn from the same population whose variance was 1 
and so the variance of the difference should be

σ σ σX Y X Y− = + = + =2 2 2 1 1 2

A

B

C

–4 –3 –2 –1 0 1 2 3

FIGURE 4-2. If one selects pairs of 
members of the population in panel A at 
random and computes the difference the 
population of differences, shown in panel 
B, has a wider variance than the original 
population. Panel C shows another 100 
values for differences of pairs of members 
selected at random from the population in 
A to make this point again.
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Since the standard deviation is the square root of the 
variance, the standard deviation of the population of dif-
ferences will be 2 times the standard deviation of the 
original population, or about 40% bigger, confirming our 
earlier subjective impression.*

When we wish to estimate the variance in the differ-
ence or sum of members of two populations based on the 
observations, we simply replace the population variances 
s 2 in the equation above with the estimates of the vari-
ances computed from our samples:

s s sX Y X Y− = +2 2 2

The standard error of the mean is just the standard 
deviation of the population of all possible sample means 
of samples of size n, and so we can find the standard error 
of the difference of two means using the equation above. 
Specifically,

s s s
X Y X Y− = +2 2 2

in which case

s s s
X Y X Y− = +2 2

Now we are ready to construct the t ratio from the 
definition in the last section.

  �USE OF t TO TEST HYPOTHESES 
ABOUT TWO GROUPS

Recall that we decided to examine the ratio

t = Difference in sample means

Standard error oof difference of sample means

We can now use the result of the last section to trans-
late this definition into the equation

t
X X

s

X X

s s

X X

X X

=
−

=
−

+

−

1 2

1 2

1 2

1 2

2 2

Alternatively, we can write t in terms of the sample stan-
dard deviations rather than the standard errors of the mean:

t
X X

s n s n
=

−

+
1 2

1
2

2
2( / ) ( / )

in which n is the size of each sample.
If the hypothesis that the two samples were drawn 

from the same population is true, the variances s 1
2

and s2
2

computed from the two samples are both estimates of the 
same population variance s 2. Therefore, we replace the two 
different estimates of the population variance in the equa-
tion above with a single estimate, s 2, that is obtained by 
averaging these two separate estimates:

s s s2 1
2 1

2
2
2= +( )

This is called the pooled-variance estimate since it is 
obtained by pooling the two estimates of the population 
variance to obtain a single estimate. The t test statistic 
based on the pooled-variance estimate is

t
X X

s n s n
=

−

+
1 2

2 2( / ) ( / )

The specific value of t one obtains from any two sam-
ples depends not only on whether or not there actually is 
a difference in the means of the populations from which 
the samples were drawn but also on which specific indi-
viduals happened to be selected for the samples. Thus, as 
for F, there will be a range of possible values that t can 
have, even when both samples are drawn from the same 
population. Since the means computed from the two 

*The fact that the sum of randomly selected variables has a variance 
equal to the sum of the variances of the individual numbers explains why 
the standard error of the mean equals the standard deviation divided by 

n . Suppose we draw n numbers at random from a population with 
standard deviation s. The mean of these numbers will be

X n X X X Xn= + + + +1
1 2 3( )�

so

nX X X X Xn= + + + +1 2 3 �

Since the variance associated with each of the X is a s 2, the variance 
of nX n/ will be

σ σ σ σ σ σnX n2 2 2 2 2 2= + + + + =�

and the standard deviation will be

σ σn n
X =

But we want the standard deviation of X , which is nX n/  therefore

σ σ σX n= / /n = n

which is the formula for the standard error of the mean. Note that we 
made no assumptions about the population  from which the sample 
was drawn. (In particular, we did not assume that it had a normal 
distribution.)
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samples will generally be close to the mean of the popula-
tion from which they were drawn, the value of t will tend 
to be small when the two samples are drawn from the same 
population. Therefore, we will use the same procedure  
to test hypotheses with t as we did with F in Chapter 3. 
Specifically, we will compute t from the data then reject 
the assertion that the two samples were drawn from the 
same population if the resulting value of t is “big.”

Let us return to the problem of assessing the value of 
the diuretic we were discussing earlier. Suppose the entire 
population of interest contains 200 people. In addition, 
we will assume that the diuretic had no effect, so that the 
two groups of people being studied can be considered to 
represent two samples drawn from a single population. 
Figure 4-3A shows this population, together with two 
samples of 10 people each selected at random for study. 

A

Placebo

Drug

Urine production (mL/d)

t = 0.2

B

C

Placebo

Placebo

Drug

Drug

t = –2.1

t = 0

FIGURE 4-3. A population of 200 
individuals and two groups selected at 
random for study of a drug designed to 
increase urine production but which is 
totally ineffective. The people shown as 
dark circles received the placebo and 
those with the lighter circles received the 
drug. An investigator would not see the 
entire population but just the information 
as reflected in the lower part of panel A; 
nevertheless, the two samples show very 
little difference and it is unlikely that one 
would have concluded that the drug had 
an effect on urine production. Of course, 
there is nothing special about the two 
random samples shown in panel A, and 
an investigator could just as well have 
selected the two groups of people in 
panel B for study. There is more 
difference between these two groups than 
the two shown in panel A and there is a 
chance that the investigator would think 
that this difference is due to the drug’s 
effect on urine production rather than 
simple random sampling. (continued)
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The people who received the placebo are shown as dark 
circles, and the people who received the diuretic are shown 
as lighter circles. The lower part of Figure 4-3A shows the 
data as they would appear to the investigator together 
with the mean and standard deviations computed from 
each of the two samples. Looking at these data certainly 
does not suggest that the diuretic had any effect. The value 
of t associated with these samples is −0.2.

Of course, there is nothing special about these two sam-
ples and we could just as well have selected two different 
groups of people to study. Figure 4-3B shows another col-
lection of people that could have been selected at random 
to receive the placebo (dark circles) or diuretic (light cir-
cles). Not surprisingly, these two samples differ from each 
other as well as the samples selected in Figure 4-3A. Given 
only the data in the lower part of Figure 4-3B we might 
think that the diuretic increases urine production. The t 
value associated with these data is −2.1. Figure 4-3C shows 
yet another pair of samples. They differ from each other 
and the other samples considered in Figure 4-3A and 4-3B. 
The samples in Figure 4-3C yield a value of 0 for t.

We could continue this process for quite a long time 
since there are more than 1027 different pairs of samples of 
10 people each that we could draw from the population of 
200 individuals shown in Figure 4-3A. We can compute a 
value of t for each of these 1027 different pairs of samples. 
Figure 4-4 shows the values of t associated with 200 different 

B

C

Placebo

Placebo

Drug

Drug

t = –2.1

t = 0

FIGURE 4-3. (Continued) Panel C shows 
yet another pair of random samples the 
investigator might have drawn for the 
study.

pairs of random samples of 10 people each drawn from 
the original population, including the three specific pairs 
of samples shown in Figure 4-3. The distribution of pos-
sible t values is symmetrical about t = 0 because it does 
not matter which of the two samples we subtract from the 
other. As predicted, most of the resulting values of t are 
close to zero; t rarely is below about −2 or above +2.

Figure 4-4 allows us to determine what a “big” t is. 
Figure 4-4B shows that t will be less than −2.1 or greater 
than +2.1 10 out of 200, or 5% of the time. In other 
words, there is only a 5% chance of getting a value of t 
more extreme than −2.1 or +2.1 when the two samples 
are drawn from the same population. Just as with the F 
distribution, the number of possible t values rapidly 
increases beyond 1027 as the population size grows, and 
the distribution of possible t values approaches a smooth 
curve. Figure 4-4C shows the result of this limiting pro-
cess. We define the cutoff values for t that are large 
enough to be called “big” on the basis of the total area in 
the two tails. Figure 4-4C shows that only 5% of the pos-
sible values of t will lie beyond −2.1 or +2.1 when the 
two samples are drawn from a single population. When 
the data are associated with a value of t beyond this 
range, it is customary to conclude that the data are 
inconsistent with the null hypothesis of no difference 
between the two samples and report that there was a dif-
ference in treatment.
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A

B

C

D

Value of t

–3.0 –2.0 –1.0 0 1.0 2.0 3.0

–3 –2 –1 0 1 2 3

Value of t

FIGURE 4-4. The results of 200 studies 
like that described in Figure 4-3; the three 
specific studies from Figure 4-3 are 
indicated in panel A. Note that most 
values of the t statistic cluster around 0, 
but it is possible for some values of t to be 
quite large, exceeding 1.5 or 2. Panel B 
shows that there are only 10 chances in 
200 of t exceeding 2.1 in magnitude if the 
two samples were drawn from the same 
population. If one continues examining all 
possible samples drawn from the 
population and our pairs of samples drawn 
from the same population, one obtains a 
distribution of all possible t values which 
becomes the smooth curve in panel C. In 
this case, one defines the critical value of t 
by saying that it is unlikely that this value 
of t statistic was observed under the 
hypothesis that the drug had no effect by 
taking the 5% most extreme error areas 
under the tails of distribution and selecting 
the t value corresponding to the beginning 
of this region. Panel D shows that if one 
required a more stringent criterion for 
rejecting the hypothesis for no difference 
by requiring that t be in the most extreme 
1% of all possible values, the cutoff value 
of t is 2.878.

The extreme values of t that lead us to reject the 
hypothesis of no difference lie in both tails of the dis-
tribution. Therefore, the approach we are taking is 
sometimes called a two-tailed t test. Occasionally, peo-
ple use a one-tailed t test, and there are indeed cases 
where this is appropriate. One should be suspicious of 
such one-tailed tests, however, because the cutoff value 
for calling t “big” for a given value of P is smaller. In 
reality, people are almost always looking for a difference 
between the control and treatment groups so a two-
tailed test is appropriate. This book always assumes a 
two-tailed test.

Note that the data in Figure 4-3B are associated with a 
t value of −2.1, which we have decided to consider “big.” 
If all we had were the data shown in Figure 4-4B, we would 
conclude that the observations were inconsistent with the 
hypothesis that the diuretic had no effect and report that 
it increased urine production, and even though we did the 
statistical analysis correctly, our conclusion about the drug 
would be wrong.

Reporting P < .05 means that if the treatment had no 
effect, there is less than a 5% chance of getting a value of t 
from the data as far or farther from 0 as the critical value 
for t to be called “big.” It does not mean it is impossible to 
get such a large value of t when the treatment has no 
effect. We could, of course, be more conservative and say 
that we will reject the hypothesis of no difference between 
the populations from which the samples were drawn if t is 
in the most extreme 1% of possible values. Figure 4-4D 
shows that this would require t to be beyond −2.88 or 
+2.88 in this case, so we would not erroneously conclude 
that the drug had an effect on urine output in any of the 
specific examples shown in Figure 4-3. In the long run, 
however, we will make such errors about 1% of the time. 
The price of this conservatism is decreasing the chances of 
concluding that there is a difference when one really exists. 
Chapter 6 discusses this trade-off in more detail.

The critical values of t, like F, have been tabulated and 
depend not only on the level of confidence with which 
one rejects the hypothesis of no difference — the P 
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value — but also on the sample size. As with the F distri-
bution, this dependence on sample size enters the table 
as the degrees of freedom, n, which is equal to 2(n − 1) for 
this t test, where n is the size of each sample. As the sam-
ple size increases the value of t needed to reject the 
hypothesis of no difference decreases. In other words, as 
sample size increases it becomes possible to detect 
smaller differences with a given level of confidence. 
Reflecting on Figure 4-1 should convince you that this is 
reasonable.

  �WHAT IF THE TWO SAMPLES 
ARE NOT THE SAME SIZE?

It is easy to generalize the t test to handle problems in 
which there are different numbers of members in the two 
samples being studied. Recall that t is defined by

t
X X

s s
X X

=
−

+
1 2

1 2

2 2

in which s
X 1

and s
X 2

are the standard errors of the means 
of the two samples. If the first sample is of size n1 and the 
second sample contains n 2 members,

s
s

n
s

s

nX X1 2

2 1
2

1

2 2
2

2

= =and

in which s1 and s2 are the standard deviations of the two 
samples. Use these definitions to rewrite the definition of 
t in terms of the sample standard deviations

t
X X

s n s n
=

−

+
1 2

1
2

1 2
2

2( / ) ( / )

When the two samples are different sizes, the pooled 
estimate of the variance is given by

s 2 1 1
2

2 2
2

1 2

1 1

2
=

− + −
+ −

( ) ( )n s n s

n n

so that

t =
−

+

X X

s n s n

1 2

2
1

2
2( / ) ( / )

This is the definition of t for comparing two samples 
of unequal size. There are n = n1 + n2 − 2 degrees of 
freedom.

Notice that this result reduces to our earlier results 
when the two sample sizes are equal, that is, when n1 = 
n2 = n.

  CELL PHONES REVISITED

The study by Fejes and colleagues about the relationship 
of cell phone use and rapid sperm motility we discussed 
in Chapter 3 had two observational groups, 61 men who 
used cell phones less than 15 minutes/day and 61 men 
who used cell phones more than 60 minutes/day, so we 
can analyze their data using a t test, as well as an analysis 
of variance. From Figure 3-7, the mean percentage of rap-
idly mobile sperm was 49% for the low use group and 
41% for the high use group. The standard deviations were 
21% and 22%, respectively. Because the sample sizes are 
equal,*

	
s s s2 21= +

2 low
2

high( )

s2 2 2 21

2
21 22 462 5= + =( ) . %

and

	

t
X X

=
−

+

low high

low high

s

n

s

n

2 2

t = −

+
=49 41

462 5
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462 5
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2 054
. .

.

with n = 2(n - 1) = 2(61 - 1) = 120 degrees of freedom. 
Table 4-1 shows that the magnitude of t should only exceed 
1.980 only 5% of the time by chance when the null hypoth-
esis is true, in this case, that cell phone exposure does not 
affect rapid sperm motility (P < .05). Since the magnitude 
of t associated with the data exceeds 1.980, we reject the 
null hypothesis and conclude that cell phone use is associ-
ated with rapid sperm motility.

*We would have obtained precisely the same value had we used the gen-
eral formula for the pooled variance:
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  TABLE 4-1. Critical Values of t (Two-Tailed)

–t +t0

Probability of Greater Value (P)

n 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001

1 1.000 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619
2 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599
3 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924
4 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 1.415 1.895 2.365 2.998 3.449 4.029 4.785 5.408
8 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768
24 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
31 0.682 1.309 1.696 2.040 2.453 2.744 3.022 3.375 3.633
32 0.682 1.309 1.694 2.037 2.449 2.738 3.015 3.365 3.622
33 0.682 1.308 1.692 2.035 2.445 2.733 3.008 3.356 3.611
34 0.682 1.307 1.691 2.032 2.441 2.728 3.002 3.348 3.601
35 0.682 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591
36 0.681 1.306 1.688 2.028 2.434 2.719 2.990 3.333 3.582
37 0.681 1.305 1.687 2.026 2.431 2.715 2.985 3.326 3.574
38 0.681 1.304 1.686 2.024 2.429 2.712 2.980 3.319 3.566

(continued)
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� TABLE 4-1. Critical Values of t (Two-Tailed) (Continued)

Probability of Greater Value (P)

ν 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001

39 0.681 1.304 1.685 2.023 2.426 2.708 2.976 3.313 3.558
40 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
42 0.680 1.302 1.682 2.018 2.418 2.698 2.963 3.296 3.538
44 0.680 1.301 1.680 2.015 2.414 2.692 2.956 3.286 3.526
46 0.680 1.300 1.679 2.013 2.410 2.687 2.949 3.277 3.515
48 0.680 1.299 1.677 2.011 2.407 2.682 2.943 3.269 3.505
50 0.679 1.299 1.676 2.009 2.403 2.678 2.937 2.261 3.496
52 0.679 1.298 1.675 2.007 2.400 2.674 2.932 3.255 3.488
54 0.679 1.297 1.674 2.005 2.397 2.670 2.927 3.248 3.480
56 0.679 1.297 1.673 2.003 2.395 2.667 2.923 3.242 3.473
58 0.679 1.296 1.672 2.002 2.392 2.663 2.918 3.237 3.466
60 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
62 0.678 1.295 1.670 1.999 2.388 2.657 2.911 3.227 3.454
64 0.678 1.295 1.669 1.998 2.386 2.655 2.908 3.223 3.449
66 0.678 1.295 1.668 1.997 2.384 2.652 2.904 3.218 3.444
68 0.678 1.294 1.668 1.995 2.382 2.650 2.902 3.214 3.439
70 0.678 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435
72 0.678 1.293 1.666 1.993 2.379 2.646 2.896 3.207 3.431
74 0.678 1.293 1.666 1.993 2.378 2.644 2.894 3.204 3.427
76 0.678 1.293 1.665 1.992 2.376 2.642 2.891 3.201 3.423
78 0.678 1.292 1.665 1.991 2.375 2.640 2.889 3.198 3.420
80 0.678 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
90 0.677 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402

100 0.677 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
140 0.676 1.288 1.656 1.977 2.353 2.611 2.852 3.149 3.361
160 0.676 1.287 1.654 1.975 2.350 2.607 2.846 3.142 3.352
180 0.676 1.286 1.653 1.973 2.347 2.603 2.842 3.136 3.345
200 0.676 1.286 1.653 1.972 2.345 2.601 2.839 3.131 3.340

∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905
Normal 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905

Adapted from Zar JH. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984, 484–485:table B.3, by permission of Pearson 
Education, Inc., Upper Saddle River, NJ.

This is the same conclusion and same P value we obtained 
when analyzing the data using analysis of variance.

Fejes and colleagues also measured total sperm motil-
ity, this time in different numbers of men in the two sam-
ples of cell phone users. Box 4-1 shows the data and 
calculation of the associated t test. The t value for these 
data fall between the critical values of 0.667 and 1.289 that 

define the 50% and 20% extremes of the t distribution, 
which is nowhere near the value of 1.980 that defines the 
most extreme 5%, the cutoff used to define traditional 
statistical significance. Thus, we do not have strong 
enough evidence to reject the null hypothesis that there is 
no relationship between cell phone exposure and total 
sperm motility.
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Does this result prove that there really is not an effect? 
No. It just means that we do not have enough evidence to 
reject the null hypothesis of no effect. (We will return to 
the question of how confident we can be in drawing nega-
tive conclusions when results do not reach statistical sig-
nificance in Chapter 6.)

  �THE t TEST IS AN ANALYSIS 
OF VARIANCE*

The t test we just developed and analysis of variance we 
developed in Chapter 3 are really two different ways of 
doing the same thing. Since few people recognize this, we 

will prove that when comparing the means of two groups, 
F = t 2. In other words, the t test is simply a special case of 
analysis of variance applied to two groups.

We begin with two samples, each of size n, with means 
and standard deviations X 1 and X 2 and s1 and s2, respec-
tively.

To form the F ratio used in analysis of variance, we first 
estimate the population variance as the average of the 
variances computed for each group

s s swit
2 1

2 1
2

2
2= +( )

Next, we estimate the population variance from the 
sample means by computing the standard deviation of the 
sample means with
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*This section represents the only mathematical proof in this book and as 
such is a bit more technical than everything else. The reader can skip this 
section with no loss of continuity.

Total Sperm Motiility (%)

Observed Cell Phone Use Sample Size (n) Mean Standard Deviation
Low use (<15 min/d) 120 60 19
High use (>60 min/d) 62 57 17

Because the sample sizes are different, we compute the pooled variance estimate with
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with n = nlow + nhigh – 2 = 180 degrees of freedom. This value of t does not even approach 1.973, the critical value 
for the most extreme 5% of the t distribution used to define conventional statistical significance, so we do not 
reject the null hypothesis of no effect of cell phone use on overall sperm motility.

Box 4-1 • Effect of Low Versus High Cell Phone Use on Overall Sperm Motility
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Therefore
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in which X is the mean of the two sample means
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Since the square of a number is always positive, (a − b)2 = 
(b − a)2 and the equation above becomes
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Therefore, the estimate of the population variance 
from between the groups is
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Finally, F is the ratio of these two estimates of the pop-
ulation variance
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The quantity in the brackets is t, hence

F = t 2

The degrees of freedom for the numerator of F equals 
the number of groups minus 1, that is, 2 − 1 = 1 for all 
comparisons of two groups. The degrees of freedom for 
the denominator equals the number of groups times 1 
less than the sample size of each group, 2(n − 1), which 
is the same as the degrees of freedom associated with the 
t test.

In sum, the t test and analysis of variance are just two 
different ways of looking at the same test for two groups. 
Of course, if there are more than two groups, one cannot 
use the t test form of analysis of variance but must use the 
more general form we developed in Chapter 3.

As noted earlier, we drew the same conclusion about 
the effects of cell phone use on rapid sperm motility 
when analyzing the results using analysis of variance in 
Chapter 3 and using a t test in this chapter. As expected, 
the degrees of freedom for the t test, n, is 120, the same as 
the denominator degrees of freedom for the analysis of 
variance, nd and the square of the t value we obtained, 
2.0542, equals the value of F we obtained from the analy-
sis of variance, 4.22.

  �COMMON ERRORS IN THE USE OF 
THE t TEST AND HOW TO 
COMPENSATE FOR THEM

The t test is used to compute the probability of being 
wrong, the P value, when asserting that the mean values of 
two treatment groups are different, when, in fact, they were 
drawn from the same population. It is also used widely 
but erroneously to test for differences between more than 
two groups by comparing all possible pairs of means with 
t tests.

For example, suppose an investigator measured blood 
sugar under control conditions, in the presence of drug A, 
and in the presence of drug B. It is common to perform 
three t tests on these data: one to compare control versus 
drug A, one to compare control versus drug B, and one to 
compare drug A versus drug B. This practice is incorrect 
because the true probability of erroneously concluding 
that the drug affected blood sugar is actually higher than 
the nominal level, say 5%, used when looking up the “big” 
cutoff value of the t statistic in a table.

To understand why, reconsider the experiment 
described in the last paragraph. Suppose that if the value 
of the t statistic computed in one of the three compari-
sons just described is in the most extreme 5% of the val-
ues that would occur if the drugs really had no effect, we 
will reject that assumption and assert that the drugs 
changed blood sugar. We will be satisfied if P < .05; in 
other words, in the long run we are willing to accept the 
fact that 1 statement in 20 will be wrong. Therefore, when 
we test control versus drug A, we can expect erroneously 
to assert a difference 5% of the time. Similarly, when test-
ing control versus drug B, we expect erroneously to assert 
a difference 5% of the time, and when testing drug A ver-
sus drug B, we expect erroneously to assert a difference 
5% of the time. Therefore, when considering the three 
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tests together, we expect to conclude that at least one pair 
of groups differs about 5% + 5% + 5% = 15% of the time, 
even if in reality the drugs did not affect blood sugar.  
(As we will see later, P actually equals 14%.) If there are 
not too many comparisons, simply adding the P values 
obtained in multiple tests produces a realistic and con-
servative estimate of the true P value for the set of com-
parisons.

In the example above, there were three t tests, so the 
effective P value was about 3(.05) = .15 or 15%. When 
comparing four groups, there are six possible t tests (1 ver-
sus 2, 1 versus 3, 1 versus 4, 2 versus 3, 2 versus 4, 3 versus 
4), so if the author concludes that there is a difference and 
reports P < .05, the effective P value is about 6 (.05) = .30; 
there is about a 30% chance of at least one incorrect state-
ment if the author concludes that the treatments had an 
effect!

In Chapter 2, we discussed random samples of Mar-
tians to illustrate the fact that different samples from the 
same population yield different estimates of the popula-
tion mean and standard deviation. Figure 2-5 showed 

three such samples of the heights of Martians, all drawn 
from a single population. Suppose we chose to study how 
these Martians respond to human hormones. We draw 
three samples at random, give one group a placebo, one 
group testosterone, and one group estrogen. Suppose that 
these hormones have no effect on the Martians’ heights. 
Thus, the three groups shown in Figure 2-5 represent 
three samples drawn at random from the same popula-
tion.

Figure 4-5 shows how these data would probably 
appear in a typical medical journal. The large vertical 
bars denote the value of the mean responses, and the 
small vertical bars denote 1 standard error of the mean 
above or below the sample means. (Showing 1 standard 
deviation would be the appropriate way to describe vari-
ability in the samples.) Many authors would analyze these 
data by performing three t tests: placebo against testoster-
one, placebo against estrogen, and testosterone against 
estrogen. These three tests yield t values of 2.39, 0.93, and 
1.34, respectively. Since each test is based on 2 samples of 
10 Martians each, there are 2(10 − 1) = 18 degrees of 
freedom. From Table 4-1, the critical value of t with a 5% 
chance of erroneously concluding that a difference exists 
is 2.101. Thus, the author would conclude that testoster-
one produced shorter Martians than placebo, whereas 
estrogen did not differ significantly from placebo, and 
that the two hormones did not produce significantly dif-
ferent results.

Think about this result for a moment. What is wrong 
with it? If testosterone produced results not detectably dif-
ferent from those of estrogen and estrogen produced results 
not detectably different from those of placebo, how can tes-
tosterone have produced results different from placebo? Far 
from alerting medical researchers that there is something 
wrong with their analysis, this illogical result usually leads 
to a very creatively written “Discussion” section in their 
paper.

An analysis of variance of these data yields F = 2.74 
[with numerator degrees of freedom = m − 1 = 3 − 1 = 2 
and denominator degrees of freedom m (n − 1) = 3(10 − 1) 
= 27], which is below the critical value of 3.35 we have 
decided is required to assert that the data are incompatible 
with the hypothesis that all three treatments acted as pla-
cebos.

Of course, performing an analysis of variance does not 
ensure that we will not reach a conclusion that is actually 
wrong, but it will make it less likely.

Placebo Testosterone Estrogen

H
ei

gh
t 
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m

)

FIGURE 4-5. Results of a study of human hormones on 
Martians as it would be commonly presented in the 
medical literature. Each large bar has a height equal to the 
mean of the group; the small vertical bars indicate 1 
standard error of the mean on either side of the mean (not 
1 standard deviation).
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We end our discussion of common errors in the use of 
the t test with three rules of thumb:

•	 The t test can be used to test the hypothesis that two group 
means are not different.

•	 When the experimental design involves multiple groups, 
analysis of variance should be used.

•	 When t tests are used to test for differences between 
multiple groups, it is not appropriate simply to use  
multiple t tests to do pairwise comparisons of the 
groups.

  �HOW TO USE t TESTS TO 
ISOLATE DIFFERENCES  
BETWEEN GROUPS IN ANALYSIS  
OF VARIANCE

The last section demonstrated that when presented with 
data from experiments with more than two groups of 
subjects, one must do an analysis of variance to deter-
mine how inconsistent the observations are with the 
hypothesis that all the treatments had the same effect. 
Doing pairwise comparisons with t tests increases the 
chances of erroneously reporting an effect above the 
nominal value, say 5%, used to determine the value of a 
“big” t. The analysis of variance, however, only tests the 
global hypothesis that all the samples were drawn from a 
single population. In particular, it does not provide any 
information on which sample or samples differed from 
the others.

There are a variety of methods, called multiple-
comparison procedures, that can be used to provide infor-
mation on this point. All are essentially based on the t test 
but include appropriate corrections for the fact that we are 
comparing more than one pair of means. We will develop 
several approaches, beginning with the Bonferroni cor-
rected t test, or, more simply, the Bonferroni t test. The gen-
eral approach we take is first to perform an analysis of 
variance to test the overall null hypothesis of no differ-
ences, then use a multiple-comparison procedure to iso-
late the treatment or treatments producing the different 
results.*

The Bonferroni t Test
In the previous section, we saw that if one analyzes a set 
of data with three t tests, each using the 5% critical 
value for concluding that there is a difference, there is 
about a 3(5) = 15% chance of finding it. This result is a 
special case of a formula called the Bonferroni inequal-
ity, which states that if k statistical tests are performed 
with the cutoff value for the test statistics, for example, 
t or F, at the α level, the likelihood of observing a value 
of the test statistic exceeding the cutoff value at least 
once when the treatments did not produce an effect  
is no greater than k times a. Mathematically, the 
Bonferroni inequality states

a T < ka

where aT is the true probability of erroneously concluding 
a difference exists at least once. aT is the error rate we want 
to control. From the equation above,

α
αT

k
<

Thus, if we do each of the t tests using the critical 
value of t corresponding to a T/k, the error rate for all the 
comparisons taken as a group will be at most a T. For 
example, if we wish to do three comparisons with t tests 
while keeping the probability of making at least one 
false-positive error to less than 5%, require that the P 
value associated with each value of t be smaller than 
.05/3 = 1.67% for each of the individual comparisons. 
This procedure is called the Bonferroni corrected t test or, 
more simply, the Bonferroni t test, because it is based on 
the Bonferroni inequality.

This procedure works reasonably well when there are 
only a few groups to compare, but as the number of 
comparisons k increases above 3 or 4, the value of t 
required to conclude that a difference exists becomes 
much larger than it really needs to be and the method 
becomes overly conservative. One way to make the Bon-
ferroni t test less conservative is to use the estimate of the 
population variance computed from within the groups 
in the analysis of variance. Specifically, recall that we 
defined t as

t
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where s 2 is an estimate of the population variance. We will 
replace this estimate with the population variance estimated 

*Some statisticians believe that this approach is too conservative and that 
one should skip the analysis of variance and proceed directly to the mul-
tiple comparisons of interest.
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from within the groups as part of the analysis of variance,
swit

2 ,to obtain
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The degrees of freedom for this test are the same as the 
denominator degrees of freedom for the analysis of vari-
ance and will be higher than for a simple t test based on 
the two samples being compared. Since the critical value 
of t decreases as the degrees of freedom increase, it will be 
possible to detect a difference with a given confidence 
with smaller absolute differences in the means.

More on Cell Phones and Rabbit Sperm
In Chapter 3 we analyzed the data in Box 3-1 and con-
cluded that they were inconsistent with the null hypoth-
esis that the three sample groups of rabbits — ordinary 
controls in regular rabbit cages, stress controls in more 
restrictive cages, and cell phone exposed rabbits in 
restricted cages where their testes were exposed to cell 
phone radiation for 8 hours a day — were drawn from 
populations with the same mean sperm motility. At the 
time, however, we were unable to isolate where the differ-
ence came from. Now we can use the Bonferroni t test to 
compare the three groups pairwise.

From Box 3-1, our best estimate of the within-groups 
variance swit

2
is 7.11%2. There are m = 3 samples, each con-

sisting of n = 8 rabbits, so there are m (n - 1) = 3(8 - 1) = 
21 degrees of freedom associated with the estimate of the 
within-groups variance. (By comparison, if we just used 
the pooled variance from the two samples in each pairwise 
comparison, there would only be 2[n - 1] = 2[8 - 1] = 14 
degrees of freedom.)

We do the three pairwise comparisons by computing the 
corresponding three values of t using the within-groups 

variance from the analysis of variance. To compare the ordi-
nary control with the cell phone exposure,
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To compare the stress control with the cell phone expo-
sure,
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To compare the ordinary control with the stress control,
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There are three comparisons, so to have an overall 
family error rate of less than 5% we require that the P 
value associated with each of these three comparisons to 
be smaller than .05/3 = .0167. (Table 4-2 summarizes the 
three pairwise comparisons.) All three t values exceed 
4.140, the critical value for P < .001 with 14 degrees of 
freedom (in Table 3-1), which is much smaller than the 
required .0167, so we conclude that all three groups are 
different from each other.

In other words, rabbits in the stress cage have signifi-
cantly lower sperm motility than rabbits in the ordinary 
cage and rabbits exposed to cell phone radiation have sig-
nificantly lower sperm motility than rabbits in the stress 
cage (as well as the rabbits in the ordinary cage). Thus, we 
conclude that, while the limited cage space led to lower 
sperm motility, the cell phone radiation further lowered 

  �TABLE 4-2. Pairwise Comparisons of Sperm Motility in Rabbit Cell Phone Experiment Using Bonferroni t Tests 
(Family Error Rate, a T = 0.05)

Comparison t P Pcrit a T/k P < Pcrit?

Ordinary control vs. cell phone 16.501 <.001 .0167 Yes
Stress control vs. cell phone 8.251 <.001 .0167 Yes
Ordinary control vs. stress control 8.251 <.001 .0167 Yes

n = 21 degrees of freedom; k = 3 comparisons.
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sperm motility. Since these data came from an experimental 
rather than an observational study, we can conclude that 
the cell phone radiation caused the reduction in sperm 
motility in these rabbits (as did the stress of being in a 
cramped cage).

Note that the three t pairwise comparisons are listed in 
declining order based on the value of t associated with the 
comparison, from largest to smallest difference. While 
doing the tests in the order from largest to smallest differ-
ence is not required when doing Bonferroni t tests, it is 
standard practice. The more powerful Holm-Sidak cor-
rected t test that we discuss next requires that the tests be 
done in order from largest to smallest difference, as mea-
sured by the t values associated with the individual com-
parisons.

A Better Approach to Multiple  
Comparisons: The Holm t Test
There have been several refinements of the Bonferroni 
t test designed to maintain the computational simplic-
ity while avoiding the excessive caution that the Bon-
ferroni correction brings. We begin with the Holm 
corrected t test or, more simply, the Holm t test.* The 
Holm correction is nearly as easy to compute as the 
Bonferroni correction, but yields a more powerful test.† 
The Holm t test is a so-called sequentially rejective, or 
step-down, procedure because it applies an accept/
reject criterion to a set of ordered null hypotheses, 
starting with the smallest P value, and proceeding until 
it fails to reject a null hypothesis.

To perform the Holm t test, we compute the family of 
pairwise comparisons of interest (with t tests using the 
pooled variance estimate from the analysis of variance as  
we did with the Bonferroni t test) and determine the P 
value for each test in the family. We then compare these 

*Holm S. A simple sequentially rejective multiple test procedure. Scand J 
Stat. 1979;6:65–70.
†Other multiple comparisons include the Tukey t test, Student-Neuman-
Keuls test, and Dunnett test. The Holm test is superior to these older tests.  
For more details, see Ludbrook J. Multiple comparison procedures up-
dated. Clin Exp Pharmacol Physiol. 1998;25:1032–1037; Aickin M, 
Gensler H. Adjusting for multiple testing when reporting research results: 
the Bonferroni vs. Holm methods. Am J Public Health. 1996;86:726–728; 
Levin B. Annotation: on the Holm, Simes, and Hochberg multiple test 
procedures. Am J Public Health. 1996;86:628–629; Brown BW, Russel K. 
Methods for correcting for multiple testing: operating characteristics. 
Stat Med. 1997;16:2511–2528; Morikawa T, Terao A, Iwasaki M. Power 
evaluation of various modified Bonferroni procedures by a Monte Carlo 
study. J Biopharm Stat. 1996;6:343–359.

P values to critical values that have been adjusted to con-
trol the overall family error rate when doing the multiple 
comparisons. 

In contrast to the Bonferroni correction, however, we 
take into account how many tests we have already done 
and become less conservative with each subsequent com-
parison. We begin with a correction just as conservative as 
the Bonferroni correction, then take advantage of the con-
servatism of the earlier tests and become less cautious 
with each subsequent comparison.

Suppose we wish to make k pairwise comparisons.‡ 
Order these k uncorrected P values from smallest to largest, 
with the smallest uncorrected P value considered first in the 
sequential step-down test procedure. (Because all the P val-
ues are based on the same number of degrees of freedom, 
this ordering is the same as ordering the comparisons based 
on the magnitude of t from largest to smallest, without 
regard for the signs associated with the individual t tests.) 
P1 is the smallest P value in the sequence (corresponding to 
the most extreme pairwise comparison) and Pk is the larg-
est. For the jth hypothesis test in this ordered sequence, 
Holm’s test applies the Bonferroni criterion in a step-down 
manner that depends on k and j, beginning with j = 1, and 
proceeding until we fail to reject the null hypothesis or run 
out of comparisons to do. Specifically, the uncorrected P 
value for the jth test is compared to a j = a T/(k − j + 1). For 
the first comparison, j = 1, and the uncorrected P value 
needs to be smaller than a1 = a T/(k − 1 + 1) = a T/k, the 
same as the Bonferroni correction. If this smallest observed 
P value is less than α 1, we reject that null hypothesis and 
then compare the next smallest uncorrected P value with 
a 2 = a T/(k − 2 + 1) = a T/(k − 1), which is a larger cutoff 
than we would obtain just using the Bonferroni correction. 
Because this critical value is larger, the test is less conserva-
tive and more powerful.

In the example of the relationship between cell phone 
exposure and sperm motility we have been discussing, 
there are k = 3 pairwise comparisons of interest, so to 
maintain an overall family error rate, α T, of 5%, the P 
value associated with the first (j = 1) of these ordered 
hypotheses (comparisons) will have to be smaller than 
.05/(3 – 1 + 1) = .05/3 = .0167, which is identical to the 
Bonferroni correction we applied previously to each of 
the members of this family of three tests. The comparison 

‡Like the Bonferroni correction, the Holm correction can be applied to 
any family of hypothesis tests, not just multiple pairwise comparisons.
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with the largest magnitude of t, Ordinary Control versus 
Cell Phone, has a t equal to 13.503. For 21 degrees of free-
dom, this value of t is associated with P < .001, so we 
reject the null hypothesis that these two samples were 
drawn from populations with the same mean sperm 
motility (Table 4-3).

Because the null hypothesis was rejected at this first 
step, we proceed to the next step, j = 2, using the rejection 
criterion that the P value associated with the second t is 
smaller than .05/(3 – 2 – 1) = .0250. The t value for this 
second test, 8.250, is associated with P < .001, which is 
smaller than .0250, so we reject the null hypothesis that 
the Stress Control and Cell Phone samples were drawn 
from populations with the same mean sperm motility and 
proceed to the third comparison.

For the third, and final, comparison, j = 3, we use the 
rejection criterion that the P value associated with the sec-
ond t is smaller than .05/(3 – 3 – 1) = .05, which means 
that we do no adjustment at all for the final comparison. 
The t value for this third test, 6.752, is associated with 
P < .001, which is smaller than .050, so we reject the null 
hypothesis that the Ordinary Control and Stress Control 
samples were drawn from populations with the same 
mean sperm motility and are finished.

As when we used the Bonferroni t test, all three experi-
mental groups differed from each other. If, however, any 
of the comparisons had been associated with P values 
larger than the appropriate Pcrit, we would have stopped 
the test and declared that all subsequent comparisons 
nonsignificant.

Despite reaching the same conclusion that we did when 
using the single-step Bonferroni t test, you can see by 
comparing the Pcrit values in Tables 4-2 and 4-3 that the 
progressively less stringent requirement for rejecting the 
null hypothesis with the Holm test it becomes easier to 

  �TABLE 4-3. Pairwise Comparisons of Sperm Motility in Rabbit Cell Phone Experiment Using Holm t Tests 
(Family Error Rate, a T = .05)

Comparison t P j Pcrit = aT/(k – j + 1)* P < Pcrit?

Ordinary control vs. cell phone 16.501 <.001 1 .0167 Yes
Stress control vs. cell phone   8.251 <.001 2 .0250 Yes
Ordinary control vs. stress control   8.251 <.001 3 .0500 Yes

n = 21 degrees of freedom; k = 3 comparisons.
*The Holm-Sidak calculation of Pcrit = 1 – (1 – aT)

1/(k−j  + 1) gives .0170, .0253, and .0500.

reject the null hypothesis for all but the first comparison 
compared with the Bonferroni procedure.

The Holm-Sidak t Test
As noted earlier, the Bonferroni inequality, which forms 
the basis for the Bonferroni t test and, indirectly, the Holm 
test, gives a reasonable approximation for the total risk of 
a false-positive in a family of k comparisons when the 
number of comparisons is not too large, around 3 or 4. 
The actual probability of at least one false-positive conclu-
sion (when the null hypothesis of no difference is true) is 
given by the formula

a T = 1 − (1 − a)k

When there are k = 3 comparisons, each done at the a = 
0.05 level, the Bonferroni inequality says that the total risk 
of at least one false-positive is less than ka = 3 × 0.05 = .150. 
This probability is reasonably close to the actual risk of at 
least one false-positive statement given by the equation 
above, 1 − (1 − 0.05)3 = .143. As the number of compari-
sons increases, the Bonferroni inequality more and more 
overestimates the true false-positive risk. For example, if 
there are k = 6 comparisons, ka = 6 × 0.05 = .300 compared 
with the actual probability of at least one false-positive of 
.265, nearly 10% lower. If there are 12 comparisons, the 
Bonferroni inequality says that the risk of at least one false-
positive is below 12 × 0.05 = .600, 25% above the true risk 
of .460. Table 4-4 gives the Holm-Sidak critical P values for 
various numbers of comparisons.

The Holm-Sidak corrected t test, or Holm-Sidak t test, 
is a further refinement of the Holm corrected t test that 
is based on the exact formula for α T rather than the 
Bonferroni inequality. The Holm-Sidak corrected t test 
works just like the Holm corrected t test, except that the 
criteria for rejecting the jth hypothesis test in an ordered 



  TABLE 4-4. Holm-Sidak Critical P Values for Individual Comparisons to Maintain a 5% Family Error Rate (a T = .05)

Comparison 
Number ( j)

Total Number of Comparisons (k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  1 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039 .0037 .0034

  2 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039 .0037

  3 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039

  4 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043

  5 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047

  6 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051

  7 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057

  8 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064

  9 .0500 .0253 .0170 .0127 .0102 .0085 .0073

10 .0500 .0253 .0170 .0127 .0102 .0085

11 .0500 .0253 .0170 .0127 .0102

12 .0500 .0253 .0170 .0127

13 .0500 .0253 .0170

14 .0500 .0253

15 .0500

Pcrit = 1 – (1 − aT)
1/(k−j+1).

6
6
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sequence of k tests is an uncorrected P value below 
1 − (1 − a T)1/(k−j+1) rather than the a T/(k − j + 1) used in 
the Holm test. This further refinement makes the Holm-
Sidak test slightly more powerful than the Holm test. 

The differences between the Holm and Holm-Sidak 
corrections are small. For example, if there are k = 20 
comparisons, the differences between the resulting thresh-
old values for P are in the fourth decimal place. To illus-
trate this difference, the Holm-Sidak value of Pcrit for the 
first comparison (j = 1) of the k = 3 pairwise comparisons 
in the cell phone example in Box 4-2 to control the family 
error rate a T at .05 is is 1 – (1 − a T)1/(k−j+1) = 1 – (1 − 
.05)1/(3−1+1) = 1 − .951/3 = 1 − .95.3333 = 1 − .983 = .0170, 
slightly larger than the .0167 for the Holm critical value.

Box 4-2 shows all pairwise comparisons for sperm motil-
ity in the four groups of cell phone users that we analyzed in 
Chapter 3 using all three multiple comparison methods dis-
cussed in this chapter. In this case, we conclude that sperm 
motility in the Control and Low Use (<2 hour/day) are not 
significantly different, but that this subset of two groups dif-
fers significantly from the Medium Use (2 to 4 hour/day) use 
group, which also differs from the High Use (>4 hour/day) 
group. The fact that many, if not most of the men in the 
High Use group in the study by Fejes and colleagues (defined 
as using cell phones more than 1 hour/day) were probably 
in the Low Use group in the study by Agarwal and col-
leagues. (<2 hour/day) may explain why Fejes and colleagues 
(Box 4-1) did not find a significant difference in overall 
sperm motility — as opposed to rapid sperm motility —  
associated with cell phone use. In this case, all three multi-
ple comparison procedures yield the same conclusions.

Note, however, that the critical values of P are larger for 
the Holm method than the Bonferroni method, and the 
Holm-Sidak method are larger than for the Holm method, 
demonstrating the progressively less conservative stan-
dard for the three methods. Because of the improved 
power while controlling the overall false-positive error 
rate for the family of comparisons at the desired level, we 
recommend the Holm-Sidak t test over the Bonferroni t 
test for multiple comparisons following a positive result in 
analysis of variance.

  �MULTIPLE COMPARISONS AGAINST 
A SINGLE CONTROL

In addition to all pairwise comparisons, the need some-
times arises to compare the values of multiple treatment 
groups to a single control group. One alternative would be 

to use Bonferroni, Holm, or Holm-Sidak t tests to do all 
pairwise comparisons, then only consider the ones that 
involve the control group. The problem with this approach 
is that it requires many more comparisons than are actu-
ally necessary, with the result that each individual com-
parison is done much more conservatively than is 
necessary based on the actual number of comparisons of 
interest. We can use these methods just as before for mul-
tiple comparisons against a single control group by reduc-
ing the number of comparisons, k, accordingly. As with all 
pairwise multiple comparisons, use these tests after find-
ing significant differences among all the groups with an 
analysis of variance.

For example, if we only wanted to compare the low, 
medium, and high cell phone users against the Control 
nonusers in the example we just discussed, we would only 
have to account for k = 3 comparisons (Table 4-5), as 
opposed to the 6 we had to allow for when doing all pair-
wise comparisons (Box 4-1). We compute the values of t 
and the associated P values, just as before. The critical val-
ues of Pcrit needed to reject the null hypothesis of no dif-
ference, however, are computed based on the smaller 
number of comparisons, k, so are larger than when doing 
all pairwise comparisons with the same family error rate 
(compare the values of Pcrit for all three multiple compar-
ison tests in Box 4-1 and Table 4-5). All three multiple 
comparison procedures show that the High and Medium, 
but not the Low users have significantly different levels of 
sperm motility than the Control nonusers. No statement 
can be made about the comparison of low, medium, and 
high users against each other.

  THE MEANING OF P

Understanding what P means requires understanding the 
logic of statistical hypothesis testing. For example, sup-
pose an investigator wants to test whether or not a drug 
alters body temperature. The obvious experiment is to 
select two similar groups of people, administer a placebo 
to one and the drug to the other, measure body tempera-
ture in both groups, then compute the mean and standard 
deviation of the temperatures measured in each group. 
The mean responses of the two groups will probably be 
different, regardless of whether the drug has an effect or 
not for the same reason that different random samples 
drawn from the same population yield different estimates 
for the mean. Therefore, the question becomes: Is the 
observed difference in mean temperature of the two 
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To test all pairwise comparisons for the data in Table 3-2, we first compute the t test statistics for all the six com-
parisons using the within-groups variance estimate, swit

2 2= 119.3%  and associated degrees of freedom, nd = 156, 
from the analysis of variance we completed in Chapter 3. Comparing the low user (<2 h/d) with control (no cell 
phone use) yields
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	 Likewise, comparing the high user (>4 h/d) and medium user (2 to 4 h/d) yields,
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	 We compute the t values for the four other comparisons, similarly, then list all the comparisons in declining order 
of magnitude of the associated t values (without regard to sign), as listed in the second column of the table below.

Pairwise Comparisons for Human Cell Phone Use (α T = .05)

Comparison t P j

Bonferroni Holm Holm–Sidak
Pcrit

a T/k P < Pcrit?
Pcrit

a T/(k – j + 1) P < Pcrit?
Pcrit

1 – (1 – a T)
1/(k-j+1) P < Pcrit?

High vs. Control 9.417 <.001 1 .0083 Yes .0083 Yes .0085 Yes
Medium vs. Low 8.189 <.001 2 .0083 Yes .0100 Yes .0102 Yes
Medium vs. Control 5.732 <.001 3 .0083 Yes .0125 Yes .0127 Yes
Medium vs. Low 4.504 <.001 4 .0083 Yes .0167 Yes .0170 Yes
High vs. Medium 3.685 <.001 5 .0083 Yes .0250 Yes .0253 Yes
Low vs. Control 1.228 >.10 6 .0083 No .0050 No .0500 No
nd = 156.

	 Next, look up the P values for each t in Table 4-1 using the denominator degrees of freedom from the analysis 
of variance (third column in the table above) and compare these P values with the critical value, Pcrit, for the mul-
tiple comparison procedure. 
	 For the Bonferroni corrected t test, this critical value is just the family error rate, aT = .05, divided by the total 
number of comparisons, k = 6, for all the comparisons (the fifth column in the table).
	 For the Holm corrected t test, we begin with a critical value of P as small as for the Bonfrerroni t test, but make 
each critical value less conservative (larger) as the differences in the sample means (quantified using the cor-
responding t) get smaller, until for the last comparison, we are using an unadjusted value of P, equal to the family 
error rate, in this case .05. For example, for the second comparison, j = 2, and Pcrit = aT/(k - j + 1) = .05/(6 - 2 + 1) = 
.05/5 = .0100.
	 For the Holm-Sidak corrected t test, as with the Holm corrected t test, the first comparison is done with the full 
Bonferroni correction, and we make the critical values less conservative with each subsequent comparison, we make 
the critical value of P larger with each subsequent comparison, but use the formula that better models the actual 
accumulation of false positive risks. In this case, for the second comparison, when j = 2, Pcrit = 1 – (1 - a T)

1/(k- j + 1) = 
1 - (1 - .05)1/(6-2+1) = 1 - .951/5 = 1 - .95.2 = 1 - .9898 = .0102.
 	 To determine whether each pair of means differs significantly from each other, compare the P value associated with the 
t test with the corresponding Pcrit adjusted for the multiple comparison test. In this case, the P values are smaller than Pcrit 
all the pairs of means except the Control and Low Use groups for all three multiple comparison procedures. Thus, we 
conclude that sperm motility is different between all the sample groups, except for the Control and Low Use groups, which 
are not detectably different.

Box 4-2 • All Pairwise Multiple Comparisons for Effects of Cell Phone Use on Human Sperm Motility 
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  �TABLE 4-5. Multiple Comparisons Against a Single Control Group for Human Sperm Motility and Cell Phone 
Use (a T = .05)

Comparison t P j

Bonferroni Holm Holm-Sidak

Pcrit

a T/k P < Pcrit?
Pcrit

a T/(k – j + 1) P < Pcrit?
Pcrit 

1 – (1 − a T)
1/(k−j+1) P < Pcrit?

High vs. Control 9.417 <.001 1 .0167 Yes .0167 Yes .0167 Yes
Medium vs. Control 5.732 <.001 2 .0167 Yes .0250 Yes .0253 Yes
Low vs. Control 1.288 >.10 3 .0167 No .0050 No .0500 No

nd = 156.

groups likely to be due to random variation associated 
with the allocation of individuals to the two experimental 
groups or due to the drug?

To answer this question, statisticians first quantify the 
observed difference between the two samples with a single 
number, called a test statistic, such as F or t. These statis-
tics, like most test statistics, have the property that the 
greater the difference between the samples, the greater 
their value. If the drug has no effect, the test statistic will 
be a small number. But what is “small”?

To find the boundary between “small” and “big” values 
of the test statistic, statisticians assume that the drug does 
not affect temperature (the null hypothesis). If this assump-
tion is correct the two groups of people are simply ran-
dom samples from a single population, all of whom 
received a placebo (because the drug is, in effect, a pla-
cebo). Now, in theory, the statistician repeats the experi-
ment using all possible samples of people and computes 
the test statistic for each hypothetical experiment. Just as 
random variation produced different values for means of 
different samples, this procedure will yield a range of val-
ues for the test statistic. Most of these values will be rela-
tively small, but sheer bad luck requires that there be a few 
samples that are not representative of the entire popula-
tion. These samples will yield relatively large values of the 
test statistic even if the drug had no effect. This exercise 
produces only a few of the possible values of the test sta-
tistic, say 5% of them, above some cutoff point. The test 
statistic is “big” if it is larger than this cutoff point.

Having determined this cutoff point, we execute an 
experiment on a drug with unknown properties and com-
pute the test statistic. It is “big.” Therefore, we conclude 
that there is less than a 5% chance of observing data which 

led to the computed value of the test statistic on the assump-
tion that the drug has had no effect was true. Traditionally, 
if the chances of observing the computed test statistic 
when the intervention has no effect are below 5%, one 
rejects the working assumption that the drug has no effect 
and asserts that the drug does have an effect. There is, of 
course, a chance that this assertion is wrong: about 5%. 
This 5% is known as the P value or significance level.

Precisely,

The P value is the probability of obtaining a value of 
the test statistic as large as or larger than the one com-
puted from the data when in reality there is no differ-
ence between the different treatments.

As a result of this logic, if we are willing to assert a dif-
ference when P < .05, we are tacitly agreeing to accept the 
fact that, over the long run, we expect 1 out of every 20 
assertions of a difference to be wrong.

Statistical versus Real (Clinical) Thinking
As we have said several times, statistical hypothesis testing 
as presented in this book and generally practiced is an 
argument by contradiction. One begins with the null 
hypothesis of no difference and estimates the probability 
of obtaining the observed data assuming that the null 
hypothesis is true. If that probability is sufficiently low, we 
reject the null hypothesis. Even though this formalism is 
widely used, the simple fact is that investigators rarely 
begin a study actually expecting the null hypothesis to be 
true. Quite the contrary, generally one expects that some 
alternative hypothesis — that the treatment or observa-
tional factor being studied — does have an effect.
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Indeed, in terms of practical thinking, if the results of 
the study reject the null hypothesis of no effect, it actually 
reinforces the “real” hypothesis that there was an effect, 
which is what motivated the study in the first place. If, on 
the other hand, you fail to reject the null hypothesis of no 
effect, that fact is evidence that the “real” hypothesis is not 
correct. This use of information in an incremental way, 
which involves beginning with some prior expectation of 
what the underlying relationship between the treatment 
(or observational factor) and the outcome is, then modify-
ing that belief on the basis of the experimental data is how 
scientific and clinical decision making is actually done.

There is a branch of statistical reasoning called Bayesian 
decision making, based on simple probability calculations 
known as Bayes’ rule,* that allows you to use the results of 
an experiment to modify, in a quantitative way, your prior 
expectations of the relationship you are studying.

Bayes’ rule allows you to begin with a prior distribution 
of possible outcomes (each with a probability attached to 
it, much like the F and t sampling distributions we have 
already discussed) then mathematically modify that dis-
tribution based on the information obtained in your 
study to obtain your posterior distribution of probabilities 
associated with different possible outcomes. Indeed, at a 
qualitative level, that is the process that people use to inte-
grate new information in making decisions — be they sci-
entific, clinical, or personal.

Many statisticians,† especially those concerned with 
clinical decision making, have argued that the simple null 
hypothesis approach to statistical decision making both 
oversimplifies the process of using data to make clinical 

*Bayes’ Rule states:

Posterior odds
of null hypotheis

Prio



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= rr odds
of null hypothesis

(data, g





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× Pr iiven the null hypothesis)

(data, given thPr ee alternative hypothesis)

where Pr means the probability of the stated situation. For a detailed 
discussion of the application of this formulation of Bayes’ Rule to bio-
medical data, see Goodman SN. Toward evidence-based medical statis-
tics. 2: the Bayes factor. Ann Intern Med. 1999;130:1005–1013.
†For a discussion of the Bayesian approach, with a comparison to the 
frequentist approach used in this book and several clinical examples, see 
Browner WS, Newman TB. Are all significant P values created equal? The 
analogy between diagnostic tests and clinical research. JAMA. 
1987;257:2459–2463; Goodman SN. Toward evidence-based medical sta-
tistics. 2: the Bayes factor. Ann Intern Med. 1999;130:1005–1013; Dia-
mond GA, Kaul S. Baysian approaches to the analysis and interpretation 
of clinical megatrends. J Am Coll Cardiol. 2004;43:1929–1939.

and scientific decisions and leads to being overly reluctant 
to conclude that the treatment actually had an effect.

There are two reasons for this view. First, traditional 
statistical hypothesis testing based on the null hypothesis 
of no effect is equivalent to saying that at the outset of the 
study you do not believe that there is any evidence to sup-
port the possibility that the treatment actually had an 
effect, which is, as discussed above, rarely the case. Second, 
each hypothesis is tested without taking in to account any-
thing else you know about the likely effects of the inter-
vention. These two factors combine to lead you to 
implicitly underestimate the prior probability that the 
treatment has an effect, which makes it harder to conclude 
that there is an effect than the data may warrant.

They are correct. Why, then, do people persist in using 
the classic approach to statistical decision making 
described in this book?

The primary reason is the difficulty in obtaining good 
estimates of the prior probabilities of the possible out-
comes before the experiment was conducted. Indeed, 
despite repeated entreaties to use Baysian decision making 
by its enthusiasts, they can point to few examples where it 
has been used in routine clinical or scientific research 
because of the difficulties in obtaining meaningful prior 
probability distributions.

Nevertheless, it is worth keeping in mind this process 
and recognizing that the results of classic statistical 
hypothesis testing — embodied as the P value — need to 
be integrated into the larger collection of knowledge that 
creators and consumers of scientific and clinical results 
possess in order to further refine their understanding of 
the problems at hand. From this perspective, the P value is 
not the arbiter of truth but rather an assistant in making 
evolving judgments as to what the truth is.

Why P < .05?
The convention of considering a difference “statistically 
significant” when P < .05 is widely accepted. In fact, it 
came from an arbitrary decision by one person, Ronald A. 
Fisher, who invented much of modern parametric statis-
tics (including the F statistic, which is named for him). In 
1926, Fisher published a paper† describing how to assess 

†Fisher RA. The arrangement of field experiments. J Min Agr. 
1926;33:503–513. For a discussion of this paper in its historical context, 
including evidence that the logic of hypothesis testing dates back to Blaise 
Pascal and Pierre Fermat, in 1654, see Cowles M, Davis C. On the origins 
of the .05 level of statistical significance. Am Psychol. 1982;37:533–558.
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whether adding manure to a field would increase crop 
yields, which introduced the idea of statistical significance 
and established the 5% standard. He said:

To an acre of ground the manure is applied; a sec-
ond acre, sown with similar seed and treated in all 
other ways like the first, receives none of the 
manure. When the produce is weighed, it is found 
that the acre which received the manure has 
yielded a crop larger indeed by, say, 10 percent. 
The manure has scored a success, but the confi-
dence with which such a result should be received 
by the purchasing public depends wholly on the 
manner in which the experiment was carried out.

First, if the experimenter could say that in twenty 
years of experience with uniform treatment the dif-
ference in favour of the acre treated with manure 
had never before touched 10%, the evidence would 
have reached a point which may be called the verge 
of significance; for it is convenient to draw the line 
at about the level at which we can say: “Either there 
is something in the treatment, or a coincidence has 
occurred such as does not occur more than one in 
twenty trials.” This level, which we may call the 5% 
point, would be indicated, though very roughly, by 
the greatest chance deviation observed in twenty 
successive trials. To locate the 5% point with any 
accuracy we should need about 500 years’ experi-
ence, for we could then, supposing no progressive 
changes in fertility were in progress, count out the 
25 largest deviations and draw the line between the 
25th and 26th largest deviation. If the difference 
between the two acres in our experimental year 
exceeded this value, we should have reasonable 
grounds for calling this value significant.

If one in 20 does not seem high enough odds, we 
may, if we prefer it, draw the line at 1 in 50 (the 2% 
point) or 1 in 100 (the 1% point.) Personally, the 
writer prefers to set a low standard of significance at 
the 5% point, and ignore entirely all results which 
fails to reach this level.

Although P < .05 is widely accepted, and you will cer-
tainly not generate controversy if you use it, a more sen-
sible approach is to consider the P value in making 
decisions about how to interpret your results without 
slavishly considering 5% a rigid criterion for “truth.”

It is commonly believed that the P value is the proba-
bility of making a mistake. There are obviously two ways 

an investigator can reach a mistaken conclusion based on 
the data, reporting that the treatment had an effect when 
in reality it did not or reporting that the treatment did not 
have an effect when in reality it did. As noted above, the P 
value only quantifies the probability of making the first 
kind of error (called a Type I or a error), that of errone-
ously concluding that the treatment had an effect when in 
reality it did not. It gives no information about the prob-
ability of making the second kind of error (called a Type 
II or b error), that of concluding that the treatment had no 
effect when in reality it did. Chapter 6 discusses how to 
estimate the probability of making Type II errors.

  PROBLEMS

4-1 In the randomized controlled trial of the use of a 
cannabis-based medicinal to treat pain associated with dia-
betic neuropathy discussed in Chapter 3, the 29 people 
randomized to the control group had a mean age of 54.4 
years old and the 24 people randomized to the treatment 
group had a mean age of 58.2 years old, with standard 
deviations of 11.6 and 8.8 years. Was there a detectable dif-
ference in the ages of these two groups?

4-2 Hypothermia is problem for extremely low birth 
weight infants. One idea to help these infants maintain 
body temperature is to wrap them in polyethylene bags in 
the delivery room and while they are being transferred to 
the neonatal intensive care unit. Patrick Carroll and col-
leagues* reviewed medical records and located 70 infants 
who were kept warm with polyethylene bags and 70 infants 
who were kept warm with traditional methods. The skin 
temperature for the infants who were kept warm with the 
polyethylene bags was 36°C and for the infants kept warm 
using traditional techniques was 35°C. The standard devi-
ations for both groups were 1°C. Is there a difference in 
skin temperature between these two treatment groups?

4-3 In addition to the stair climbing test discussed in 
Chapter 3, Mark Roig and colleagues also conducted 6 
minute walk tests in which they measured how far people 
could walk (in meters) in 6 minutes to compare the ability 
of normal people and people with chronic obstructive pul-
monary disease (COPD) to exercise. Based on the data in 
Table 4-6 is there a detectable difference in performance?

*Carroll P, Nankervis CA, Giannone PJ, Cordero L. Use of polyethylene 
bags in extremely low birth weight infant resuscitation for the prevention 
of hypothermia. J Reprod Med. 2010;55: 9–13.
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4-4 To assess whether providing in- person counseling 
would increase the use of advance directives in homeless 
people, John Song and colleagues* recruited 262 volunteers 
at emergency night shelters and other programs serving 
homeless people and randomly allocated them to receive 
in-person counseling or just be provided written materials. 
The mean age for the 145 people randomized to receive 
in-person counseling was 43.1 years and for the 117 people 
randomized to receive written materials was 43.3 years. The 
standard errors of the mean for the two groups were .87 and 
.96, respectively. Is there a difference in the ages of the two 
study groups?

*Song J. Effect of an end-of life planning intervention on the completion of 
advance directives in homeless persons. Ann Intern Med. 2010;153:76–84.

4-5 Rework Problems 3-1, 3-3, and 3-5 using the t test. 
What is the relationship between the value of t computed 
here and the value of F computed for these data in 
Chapter 3?

4-6 Problem 3-2 presented the data that White and Froeb 
collected on the lung function of nonsmokers working in 
smoke-free environments, nonsmokers working in smoky 
environments, and smokers of various intensity. Analysis 
of variance revealed that these data were inconsistent with 
the hypothesis that the lung function was the same in all 
these groups. Isolate the various subgroups with similar 
lung function. What does this result mean in terms of the 
original question they posed: Does chronic exposure to 
other people’s smoke affect the health of healthy adult 
nonsmokers?

4-7 Directly test the limited hypothesis that exposure to 
other people’s smoke affects the health of healthy non-
smokers by comparing each group of involuntary smokers 
and active smokers with the nonsmokers working in a 
clean environment as the control group. Use the data from 
Problem 3-2.

4-8 Problem 3-4 led to the conclusion that there were dif-
ferences in sperm viability among men with different lev-
els of cell phone use. What are the detectable subgroups in 
this response? Use a Holm-Sidak t test.

4-9 What conclusions would you draw if you were only 
interested in whether sperm viability among men with 
different levels of cell phone use were significantly differ-
ent from men who did not use cell phones at all?

4-10 In Problem 3-6 you determined there was a differ-
ence in burnout among staffs in different patient care 
units. Isolate these differences and discuss them.

4-11 In a test of significance, the P value of the test statis-
tic is .063. Are the data statistically significant at

(a)  both a = .05 and a = .01 levels?
(b)  a = .05 level but not at a = .01 level?
(c)  a = .01 level but not at a = .05 level?
(d)  neither a = .05 nor a = .01 levels?

  TABLE 4-6. Distance Walked in 6 Minutes (meters)

Control COPD

619 283
512 402
523 407
586 402
436 340
515 445
562 548
544 344
531 358
534 419
572 393
541 469
551 393
492 420
698 463
700 438
571 428
502 364
557 336
482 256
627 368
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5
How to Analyze Rates 
and Proportions

The statistical procedures developed in Chapters 2 to 4 are 
appropriate for analyzing the results of experiments in 
which the variable of interest is measured on an interval 
scale, such as blood pressure, urine production, or length 
of hospital stay. Much of the information physicians, 
nurses, other health professionals, and medical scientists 
use cannot be measured on interval scales. For example, 
an individual may be male or female, dead or alive, or 
Caucasian, African American, Hispanic, or Asian. These 
variables are measured on nominal scales, in which there 
is no arithmetic relationship between the different classi-
fications. We now develop the statistical tools necessary to 
describe and analyze such information.

It is easy to describe things measured on a nominal 
scale: simply count the number of patients or experimen-
tal subjects with each condition and (perhaps) compute 
the corresponding percentages.

For example, John Song and colleagues* wanted to 
study whether or not providing homeless people with per-
sonal counseling on end-of-life care and advanced direc-
tives would lead more of them to complete such directives. 
(This question had been studied among insured general 
adult populations, but not among the homeless, who have 
more health problems and less access to stable health care 
relationships.) To investigate this question, they recruited 

people at emergency night shelters, 24-hour shelters, a day 
program and treatment programs. They conducted an 
experiment in which volunteers were randomly assigned 
to either receive written material on advance directives or 
invited to attend a 1-hour in-person counseling session on 
advance directives. The outcome of the study was whether 
the people returned a completed advance directive within 
3 months. Among the 262 people who participated in the 
study 37.9% of the people who received the in-person 
counseling returned the advanced directives within 
3 months, compared with 12.8% of the people who were 
just given written instructions. Is this difference likely to 
be a real effect of the counseling or simply a reflection of 
random sampling variation?

To answer this and other questions about nominal 
data, we must first invent a way to estimate the precision 
with which percentages based on limited samples approx-
imate the true rates that would be observed if we could 
examine the entire population, in this case, all homeless 
people. We will use these estimates to construct statistical 
procedures to test hypotheses.

  BACK TO MARS

Before we can quantify the certainty of our descriptions of 
a population on the basis of a limited sample, we need to 
know how to describe the population itself. Since we have 
already visited Mars and met all 200 Martians (in Chap-
ter 2), we will continue to use them to develop ways to 
describe populations. In addition to measuring the Mar-
tians’ heights, we noted that 50 of them were left-footed 

*Song J, Ratner ER, Wall HM, Bartels DM, Ulvestad N, Petroskas D, West 
M, Weber-Main AM, Grengs L, Gelberg L. Effect of an end-of life plan-
ning intervention on the completion of advance directives in homeless 
persons. Ann Intern Med. 2010;153:76–84.
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and the remaining 150 were right-footed. Figure  5-1 
shows the entire population of Mars divided according to 
footedness. The first way in which we can describe this 
population is by giving the proportion p of Martians who 
are in each class. In this case, pleft = 50/200 = 0.25 and pright 
= 150/250 = 0.75. Since there are only two possible classes, 
notice that pright = 1 – pleft. Thus, whenever there are only 
two possible classes and they are mutually exclusive, we can 
completely describe the division in the population with the 
single parameter p, the proportion of members with one 
of the attributes. The proportion of the population with 
the other attribute is always 1 – p. 

Note that p also is the probability of drawing a left- 
footed Martian if one selects one member of the popula-
tion at random.

Thus p plays a role exactly analogous to that played by 
the population mean μ in Chapter 2. To see why, suppose 
we associate the value X = 1 with each left-footed Martian 
and a value of X = 0 with each right-footed Martian. The 
mean value of X for the population is

µ = = + + + + + + +

= + =

ΣX

N

1 1 0 0 0

200

50 1 150 0

200

50

1 � �

( ) ( )

2200
0 25= .

which is pleft.
This idea can be generalized quite easily using a few 

equations. Suppose M members of a population of N 
individuals have some attribute and the remaining N – M 
members of the population do not. Associate a value of 
X = 1 with the population members having the attribute 

and a value of X = 0 with the others. The mean of the 
resulting collection of numbers is

µ = ∑ = + − = =X

N

M N M

N

M

N
p

( ) ( )( )1 0

the proportion of the population having the attribute.
Since we can compute a mean in this manner, why not 

compute a standard deviation in order to describe vari-
ability in the population? Even though there are only two 
possibilities, X = 1, and X = 0, the amount of variability 
will differ, depending on the value of p. Figure 5-2 shows 
three more populations of 200 individuals each. In Figure 
5-2A only 10 of the individuals are left-footed; it exhibits 
less variability than the population shown in Figure 5-1. 
Figure 5-2B shows the extreme case in which half the 
members of the population fall into each of the two 
classes; the variability is greatest. Figure 5-2C shows the 
other extreme; all the members fall into one of the two 
classes, and there is no variability at all.

To quantify this subjective impression, we compute the 
standard deviation of the 1s and 0s associated with each 
member of the population when we computed the mean. 
By definition, the population standard deviation is

σ µ= ∑ −( )X

N

2

X = 1 for M members of the population and 0 for the 
remaining N – M members, and μ = p; therefore

σ =

− + − + + −
+ − + − + +
( ) ( ) ( )

( ) ( ) (

1 1 1

0 0 0

2 2 2

2 2

p p p

p p

�
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But since M/N = p is the proportion of population 
members with the attribute,

σ = − + − = − + −p p p p p p p p( ) ( ) [ ( ) ]( )1 1 1 12 2 2

which simplifies to

σ = −p p( )1

This equation for the population standard deviation 
produces quantitative results that agree with the qualita-
tive impressions we developed from Figures 5-1 and 5-2. 

Left-footed Right-footed

FIGURE 5-1. Of the 200 Martians 50 are left-footed, and 
the remaining 150 are right-footed. Therefore, if we select 
one Martian at random from this population, there is a  
pleft = 50/200 = 0.25 = 25% chance it will be left-footed.
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Since σ depends only on p, it really does not contain 
any additional information (in contrast to the mean and 
standard deviation of a normally distributed variable, 
where μ and σ provide two independent pieces of infor-
mation). It will be most useful in computing a standard 
error associated with estimates of p based on samples 
drawn at random from populations such as those shown 
in Figures 5-1 or 5-2.

  �ESTIMATING PROPORTIONS 
FROM SAMPLES

Of course, if we could observe all members of a popula-
tion, there would not be any statistical question. In fact, all 
we ever see is a limited, hopefully representative, sample 
drawn from that population. How accurately does  
the proportion of members of a sample with an attribute 
reflect the proportion of individuals in the population 
with that attribute? To answer this question, we do a sam-
pling experiment, just as we did in Chapter 2 when we 
asked how well the sample mean estimated the population 
mean.

Suppose we select 10 Martians at random from the 
entire population of 200 Martians. Figure 5-4A shows 
which Martians were drawn; Figure 5-4B shows all the 
information the investigators who drew the sample would 
have. Half the Martians in the sample are left-footed and 
half are right-footed. Given only this information, one 
would probably report that the proportion of left-footed 
Martians is 0.5%, or 50%.

Of course, there is nothing special about this sample, 
and one of the four other random samples shown in  
Figure 5-5 could just as well have been drawn, in which 
case the investigator would have reported that the propor-
tion of left-footed Martians was 30%, 30%, 10%, or 20%, 
depending on which random sample happened to be 
drawn. In each case, we have computed an estimate of the 
population proportion p based on a sample. Denote this 
estimate ˆ.p Like the sample mean, the possible values of p̂
depend on both the nature of the underlying population 
and the specific sample that is drawn. Figure 5-6 shows 
the five values of p̂ computed from the specific samples in 
Figures 5-4 and 5-5 together with the results of drawing 
another 20 random samples of 10 Martians each. Now we 
change our focus from the population of Martians to the 
population of all values of p̂ computed from random 
samples of 10 Martians each. There are more than 1016 
such samples with their corresponding estimates p̂ of the 
value of p for the population of Martians.

A

B

C
Left-footed Right-footed

p = 0
σ = 0

p = 0.50
σ = 0.50

p = 0.05
σ = 0.22

FIGURE 5-2. This figure illustrates three different 
populations, each containing 200 members but with different 
proportions of left-footed members. The standard deviation,
σ = −p p( )1 quantifies the variability in the population. 
(A) When most of the members fall in one class, σ is a small 
value, 0.2, indicating relatively little variability. (B) In contrast, 
if half the members fall into each class, σ reaches its 
maximum value of .5, indicating the maximum possible 
variability. (C) At the other extreme, if all members fall into 
the same class, there is no variability at all and σ = 0.

As Figure 5-3 shows, σ = 0 when p = 0 or p = 1, that is, 
when all members of the population either do or do not 
have the attribute, and s is maximized when p = .5, that is, 
when any given member of the population is as likely to 
have the attribute as not.
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0 0.5 1.0

0.5

σ 
=

   
p

(1
–

p)

FIGURE 5-3. The relationship between 
the standard deviation of a population 
divided into two categories varies with p, 
the proportion of members in one of the 
categories. There is no variation if all 
members are in one category or the other 
(so σ = 0 when p = 0 or 1) and maximum 
variability when a given member is 
equally likely to fall in one class or the 
other (σ = 0.5 when p = 0.5).

A

B
Left-footed Right-footed

Left-footed Right-footed

p = 50/200 = 0.25

p = 5/10 = 0.50

FIGURE 5-4. Panel A shows one random sample of 10 
Martians selected from the population in Figure 5-1; panel B 
shows what the investigator would see. Since this sample 
included five left-footed Martians and five right-footed 
Martians, the investigator would estimate the proportion of 
left-footed Martians to be ˆ . ,pleft = =5 10 5 where the 
circumflex denotes an estimate.

The mean estimate of p̂ for the 25 samples of 10 Mar-
tians each shown in Figure 5-6 is 30%, which is remark-
ably close to the true proportion of left-footed Martians 
in the population (25% or 0.25). There is some variation 
in the estimates. To quantify the variability in the possible 
values of p̂ , we compute the standard deviation of values 
of p̂  computed from random samples of 10 Martians each. 
In this case, it is about 14% or 0.14. This number describes 

the variability in the population of all possible values of 
the proportion of left-footed Martians computed from 
random samples of 10 Martians each.

Does this sound familiar? It should. It is just like the 
standard error of the mean. Therefore, we define the stan-
dard error of the proportion to be the standard deviation of 
the population of all possible values of the proportion 
computed from samples of a given size. Just as with the 
standard error of the mean

σ p̂
n

= σ

in which σ p̂
 is the standard error of the proportion, σ is 

the standard deviation of the population from which the 
sample was drawn, and n is the sample size. Since 

σ

σ

= −

= −

p p(1 )

ˆ

( )
p

p p

n

1

We estimate the standard error from a sample by 
replacing the true value of p in this equation with our 
estimate p̂ obtained from the random sample. Thus,

s ˆ

ˆ ( ˆ)
p

p p

n
= −1

The standard error is a very useful way to describe the 
uncertainty in the estimate of the proportion of a popu-
lation with a given attribute because the central-limit 
theorem (Chapter 2) also leads to the conclusion that the 
distribution of p̂ is approximately normal, with mean p 
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Left-footed Right-footed Left-footed Right-footed

Left-footed Right-footed Left-footed Right-footed

FIGURE 5-5. Four more random samples of 
10 Martians each, together with the 
sample as it would appear to the 
investigator. Depending which sample 
happened to be drawn, the investigator 
would estimate the proportion of left-footed 
Martians to be 30%, 30%, 10%, or 20%.

p

FIGURE 5-6. There will be a distribution of estimates of the 
proportion of left-footed Martians p̂left depending on which 
random sample the investigator happens to draw. This 
figure shows the five specific random samples drawn in 
Figures 5-4 and 5-5 together with 20 more random samples 
of 10 Martians each. The mean of the 25 estimates of p 
and the standard deviation of these estimates are also 
shown. The standard deviation of this distribution is the 
standard error of the estimate of the proportion σˆ;p it 
quantifies the precision with which p̂ estimates p.

and standard deviation σ p̂  for large enough sample 
sizes. On the other hand, this approximation fails for val-
ues of p near 0 or 1 or when the sample size n is small. 
When can you use the normal distribution? Statisticians 

have shown that it is adequate when np̂ and n p(1 )- ˆ both 
exceed about 5.* Recall that about 95% of all members 
of a normally distributed population fall within 2 stan-
dard deviations of the mean. When the distribution of p̂
approximates the normal distribution, we can assert, 
with about 95% confidence, that the true proportion of 
population members with the attribute of interest p lies 
within 2sp̂

of p̂.
These results provide a framework within which to 

consider the question we posed earlier in this chapter 
regarding whether in-person counseling led to higher lev-
els of completing end-of-life advance directives among 
homeless people. Of the 145 people who received in-per-
son counseling 37.9% completed the advance directives 

*When the sample size is too small to use the normal approximation, you 
need to solve the problem exactly using the binomial distribution (or use 
a table of exact values). For a discussion of the binomial distribution, see 
Zar JH. Dichotomous variables. Biostatistical Analysis, 5th ed. Upper 
Saddle River, NJ: Prentice Hall;  2010:chap 24.
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and 12.8% of the 117 people who just received written 
instructions did so. The standard errors of these propor-
tions are

sp̂
counsel

. ( . )
. . %= − = =379 1 379

145
040 4 0

for the people who received counseling and 

s ˆ
paper

. ( . )
. . %p = − = =128 1 128

117
031 3 1

for written instructions. Given that there was a 25.1% dif-
ference in the rate that people returned the advance direc-
tive, it seems likely that the counseling had an effect 
beyond just random sampling variation.

Before moving on, we should pause to list explicitly the 
assumptions that underlie this approach. We have been 
analyzing what statisticians call independent Bernoulli tri-
als, in which

•	 Each individual trial has two mutually exclusive out-
comes.

•	 The probability p of a given outcome remains constant.
•	 All the trials are independent.

In terms of a population, we can phrase these assump-
tions as follows:

•	 Each member of the population belongs to one of two 
classes.

•	 Each member of the sample is selected independently of all 
other members.

  HYPOTHESIS TESTS FOR PROPORTIONS

In Chapter 4, the sample mean and standard error of the 
mean provided the basis for constructing the t test to 
quantify how compatible observations were with the null 
hypothesis. We defined the t statistic as

t = Difference of sample means

Standard error oof difference of sample means

The role of p̂ is analogous to that of the sample mean 
in Chapters 2 and 4, and we have also derived an expres-
sion for the standard error of p̂. We now use the observed 
proportion of individuals with a given attribute and its 
standard error to construct a test statistic analogous to t to 
test the hypothesis that the two samples were drawn from 

populations containing the same proportion of individu-
als with a given attribute.

The test statistic analogous to t is

z = Difference of sample proportions

Standard eerror of difference
of sample proportions

Let p̂1
and p̂2

be the observed proportions of individu-
als with the attribute of interest in the two samples. The 
standard error is the standard deviation of the population 
of all possible values of p̂ associated with samples of a 
given size, and since variances of differences add, the stan-
dard error of the difference in proportions is

s sp p p pˆ ˆ ˆ ˆ1 2 1 2

2 2
− = + s
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p p
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If n1 and n2 are the sizes of the two samples,
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ˆ ˆ

[ ˆ ( ˆ ) ] [ ˆ ( ˆ ) ]
1 2

1 1 1 2 2 21 1/ /

is our test statistic.
z replaces t because this ratio is approximately normally 

distributed for large enough sample sizes,* and it is custom-
ary to denote a normally distributed variable with the letter z.

Just as it was possible to improve the sensitivity of the 
t test by pooling the observations in the two sample 
groups to estimate the population variance, it is possible 
to increase the sensitivity of the z test for proportions by 
pooling the information from the two samples to obtain a 
single estimate of the population standard deviation s. 
Specifically, if the null hypothesis that the two samples 

*The criterion for a large sample is the same as in the last section, namely 
that np̂ and n p(1 )- ˆ both exceed about 5 for both samples. When this is 
not the case, one should use the Fisher exact test discussed later in this 
chapter.
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were drawn from the same population is true, p̂1 = m n1 1/
and p̂ m n2 2 2/ ,=  in which m1 and m2 are the number of 
individuals in each sample with the attribute of interest, 
are both estimates of the same population proportion p. 
In this case, we could consider all the individuals drawn as a 
single sample of size n1 + n2 containing a total of m1 + m2 
individuals with the attribute and use this single pooled 
sample to estimate p̂:

ˆ
ˆ ˆ

p
m m

n n

n p n p

n n
=

+
+

=
+
+

1 2

1 2

1 1 2 2

1 2

in which case

s p p= −ˆ ( ˆ)1

and we can estimate

s
s

n
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n
p p
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Therefore, our test statistic, based on a pooled estimate 
of the uncertainty in the population proportion, is

z
p p

p p n n
=

−

− +

ˆ ˆ

ˆ ( ˆ)( )

1 2

1 21 1 1/ /

Like the t statistic, z will have a range of possible values 
depending on which random samples happen to be drawn 
to compute p̂1

and p̂2 , even if both samples were drawn 
from the same population. If z is sufficiently “big” we will 
conclude that the data are inconsistent with this null 
hypothesis and assert that there is a difference in the pro-
portions. This argument is exactly analogous to that used 
to define the critical values of the t for rejecting the 
hypothesis of no difference. The only change is that in this 
case we use the standard normal distribution (Fig. 2-5) to 
define the cutoff values. In fact, the standard normal dis-
tribution and the t distribution with an infinite number 
of degrees of freedom are identical, so we can get the crit-
ical values for 5 or 1% confidence levels from the last line 
in Table 4-1. This table shows that there is less than a 5% 
chance of z being beyond –1.96 or +1.96 and less than a 
1% chance of z being beyond –2.58 or +2.58 when, in fact, 
the two samples were drawn from the same population.

The Yates Correction for Continuity
The standard normal distribution only approximates the 
actual distribution of the z test statistic in a way that yields 
P values that are always smaller than they should be. Thus, 

the results are biased toward concluding that the treat-
ment had an effect when the evidence does not support 
such a conclusion. The mathematical reason for this prob-
lem has to do with the fact that the z test statistic can only 
take on discrete values, whereas the theoretical standard 
normal distribution is continuous. To obtain values of the 
z test statistic which are more compatible with the theo-
retical standard normal distribution statisticians have 
introduced the Yates correction (or continuity correction), 
in which the expression for z is modified to become

z
p p n n

p p n n
=

− − +

− +

ˆ ˆ ( / / )

ˆ ( ˆ)( / / )

1 2
1
2 1 2

1 2

1 1

1 1 1

This adjustment slightly reduces the value of z associ-
ated with the data and compensates for the mathematical 
problem just described.

Effect of Counseling on End-of-Life  
Planning in Homeless People
We can now formally test the null hypothesis that counsel-
ing and just giving homeless people written instructions 
on end-of-life care leads to the same rate of completing 
advance directives. (Note that we can say “leads” or “causes” 
rather than just “is associated with” because this is a ran-
domized experiment, not an observational study.) Since 55 
(37.9% of 145) people who received in-person counseling 
completed the advance directives and 15 (12.8% of 117) 
people who just received written instructions did so,

ˆ .p = +
+

=55 15

145 117
267

Sincenp̂ for the two samples, .267 ∙ 145 = 38.7 and .267 ∙ 117 
= 31.2 both exceed 5, we can use the test described in the 
last section.* Our z test statistic is therefore

z
p p

p p
n n

=
−

− +

ˆ ˆ
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− +
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

379 128

267 1 267
1

145

1

117

= 4 565.

*n p(1 )- ˆ also exceeds 5 for both samples because p̂ < .5, so (1 ).np < n pˆ ˆ-
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Including the Yates correction, it is

z
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− − +
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

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ˆ ˆ
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1 1
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. .
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1
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− +



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− +


. ( . )

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= 4 443.

Note that the Yates correction reduced the value of the 
z test statistic. (Since the sample sizes are reasonably large, 
the effect was small.) The value of the z test static, 4.443, 
exceeds 3.2905, the value that defines the most extreme 1% 
of the normal distribution (from Table 4-1), so we reject 
the null hypothesis of no difference and conclude that the 
in-person counseling significantly increased the rate at 
which homeless people returned the advance directives.

  �ANOTHER APPROACH TO TESTING 
NOMINAL DATA: ANALYSIS OF 
CONTINGENCY TABLES

The methods we just developed based on the z statistic 
are perfectly adequate for testing hypotheses when there 
are only two possible attributes or outcomes of interest. 
The z statistic plays a role analogous to the t test for data 
measured on an interval scale. There are many situa-
tions, however, where there are more than two samples 
to be compared or more than two possible outcomes. To 
do this, we need to develop a testing procedure, analo-
gous to analysis of variance, which is more flexible than 
the z test just described. While the following approach 
may seem quite different from the one we just used to 

design the z test for proportions, it is essentially the 
same.

To keep things simple, we begin with the problem we 
just solved, assessing the effectiveness of in-person coun-
seling of homeless people to prepare advance directives. In 
the last section we based the analysis on the proportion of 
people in each of the two treatment groups (in-person 
counseling or written materials). Now we change our 
emphasis slightly and base the analysis on the number of 
people in each group who did and did not file advance 
directives. Since the procedure we will develop does not 
require assuming anything about the nature of the param-
eters of the population from which the samples were 
drawn, it is called a nonparametric method.

Table 5-1 presents the data from this experiment in 
terms of the number of people in each treatment group 
who did and did not file advance directives. This table is 
called a 2 × 2 contingency table. Most of the people in the 
study fall along the diagonal in this table, suggesting an 
association between the experimental intervention and 
whether or not the person filed and advance directive. 
Table 5-2 shows what the experimental results might have 
looked like if the experimental intervention had no effect on 
the results, if the null hypothesis of no effect was true. It 
also shows the total number of people who received each 
intervention as well as the total who did and did not file 
advance directives. (The sums of the rows and columns 
are the same as in Table 5-1.) In Table 5-2, fewer people in 
both intervention groups filed advance directives than did 
not; the differences in the absolute numbers occur because 
more people were randomized into the counseling group 
than the written instructions group. In contrast to Table 
5-1, there does not seem to be a relationship between the 
intervention and whether people filed advance directives.

To understand why most people have this subjective 
impression, let us examine where the numbers in Table 
5-2 came from. Of all the 262 people in the study, 70, or 

  TABLE 5-1. Advance Directives Filed in People Who Received In-Person Counseling or Written Instructions 

Number of People

Intervention Filed Advance Directive Did Not File Advance Directive Total in Intervention Group

In-person counseling 55   90 145
Written instructions 15 102 117

 T otal 70 192 262
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70/262 = 26.7%, filed advance directives and 192, or 
192/262 = 73.3%, did not. Now, let us assume that the null 
hypothesis is true and that the intervention had no effect 
on the likelihood that a person would file an advance 
directive. In this case, we would expect 26.7% of the 145 
people who received in-person counseling to file advance 
directives (38.74 people) and 26.7% of the 117 people 
who just received written materials (31.26) to file advance 
directives. We would expect the remaining 73.3% of peo-
ple in each group to not have filed advance directives.* 
(We compute the expected frequencies to two decimal 
places to ensure accurate results in the computation of the 
χ2 test statistic below.) Thus, Table 5-2 shows how we 
would expect the data to look if 145 people received in-
person counseling and 117 received written materials and 
70 of them were destined to file advance directives regard-
less of which intervention they received. Compare Tables 
5-1 and 5-2. Do they seem similar? Not really; the actual 
pattern of observations seems quite different from what 
we expected if the intervention had no effect.

The next step in designing a statistical procedure to test 
the hypothesis that the pattern of observations is due to 
random sampling rather than the intervention is to reduce 
this subjective impression to a single number, a test statis-
tic, such as F, t, or z, so that we can reject the null hypoth-
esis of no effect when this statistic is “big.”

Before constructing this test statistic, however, let us 
consider another example. Hypothermia is a problem for 
extremely low birth weight infants. To investigate whether 
wrapping these infants in polyethylene bags in the delivery 
room and while they are being transferred to the neonatal 

intensive care unit affected survival, Patrick Carroll and 
colleagues† reviewed medical records and located 70 
infants who were kept warm with polyethylene bags and 70 
infants who were kept warm with traditional methods. In 
an effort to avoid problems created by confounding vari-
ables in this observational study, they matched the infants 
according to birth weight, gestational age, and gender. 
They found that the infants wrapped in the polyethylene 
bags had statistically significantly higher skin tempera-
tures, by an average of 1°C (see Prob. 4-2). The more 
important question was whether or not there was a mor-
tality benefit.

Table 5-3 shows the results of this study, presented in 
the same format as Table 5-1. Table 5-4 shows the expected 
pattern of observations if the null hypothesis that the 
warming treatment had no effect on mortality was true. 
Out of the 140 infants, 124, or 124/140 = 88.6%, lived. If 
the warming treatment had no effect on survival, we 
would expect 88.6% of the 70 infants in each treatment 
group, 62 to live and the remaining 8 in each group to die. 
Comparing the observed mortality pattern in Table 5-3 
with the expected pattern if the null hypothesis of no 
effect was true shows little difference, suggesting that there 
is no association between the kind of warming treatment 
and mortality.

The Chi-Square Test Statistic
Now we are ready to design our test statistic. It should 
describe, with a single number, how much the observed fre-
quencies in each cell in the table differ from the frequencies 
we would expect if there is no relationship between the 

  TABLE 5-2. Expected Advance Directives Filed if Intervention Had No Effect 

Number of People

Intervention Filed Advance Directive Did Not File Advance Directive Total in Intervention Group

In-person counseling 38.74 106.26 145
Written instructions 31.26   85.74 117

 T otal 70.00 192.00 262

*We could also have computed the estimated numbers by multiplying the 
number of people who did or did not file advance directives times the 
fraction of all the 262 people in the study, 145, or 145/262 = 55.3%, re-
ceived in-person counseling and 117, or 117/262 = 44.7%, received writ-
ten materials. The result would be the same.

†Carroll PD, Nanketvis CA, Giannone PJ, Cordero L. Use of polyethylene 
bags in extremely low birth weight infant resuscitation for the prevention 
of hyperthermia. J Reprod Med. 2010;55:9–13.
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treatments and the outcomes that define the rows and col-
umns of the table. In addition, it should allow for the fact 
that if we expect a large number of people to fall in a given 
cell, a difference of one person between the expected and 
observed frequencies is less important than in cases where 
we expect only a few people to fall in the cell.

We define the test statistic χ2 (the square of the Greek 
letter chi) as

χ2 =

−

Sum of

(Observed expected number
of indivviduals in cell)

Expected number of indivi

2

dduals in cell

The sum is calculated by adding the results for all cells 
in the contingency table. The equivalent mathematical 
statement is

χ 2
2

= −∑( )O E

E

in which O is the observed number of individuals (fre-
quency) in a given cell, E is the expected number of indi-
viduals (frequency) in that cell, and the sum is over all the 
cells in the contingency table. Note that if the observed fre-
quencies are similar to the expected frequencies, χ2 will be 
a small number and if the observed and expected frequen-
cies differ, χ2 will be a big number.

We can now use the information in Tables 5-1 and 5-2 
to compute the χ2 statistic associated with the data on 
counseling and filing advanced directives. Table 5-1 gives 
the observed frequencies, and Table 5-2 gives the expected 
frequencies. Thus,

χ 2
2 2 255 38 74

38 74

90 106 26

10
= − = − + −∑( ) ( . )
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( . )O E
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15 31 26

31 26
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20

2 2

.

( . )

.

( . )

.
.+ − + − = 8854

To begin getting a feeling of whether or not 20.854 is 
“big,” let us compute χ2 for the data on warming tech-
nique for extreme low birth weight infants and mortal-
ity using the observed and expected counts in Tables 5-3 
and 5-4:

χ 2
2 2 2

2

63 62

62

7 8

8

61 62

62

= − = − + −

+ − +
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O E

E

99 8

8
282

2− =)
.

which is pretty small, in agreement with our intuitive 
impression that the observed and expected frequencies 
are quite similar. (Of course, it is also in agreement 
with our earlier analysis of the same data using the z 

  TABLE 5-3. Mortality Associated With Extreme Low Birth Weight 

Number of Infants

Warming Treatment Lived Died Total in Treatment Group

Polyethylene bag 63   7   70
Traditional 61   9   70

 T otal 124 16 140

  TABLE 5-4. Expected Mortality if Treatment Had No Effect

Number of Infants

Warming Treatment Lived Died Total in Treatment Group

Polyethylene bag   62   8   70
Traditional   62   8   70

 T otal 124 16 140
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statistic in the last section.) In fact, it is possible to 
show that χ2 = z2 when there are only two samples and 
two possible outcomes.

Like all test statistics, χ2 can take on a range of values 
even when there is no relationship between the treatments 
and outcomes because of the effects of random sampling. 
Figure 5-7 shows the distribution of possible values for χ2 
computed from data in 2 × 2 contingency tables such as 
those in Tables 5-1 or 5-3. It shows that when the hypoth-
esis of no relationship between the rows and columns of 
the table is true, χ2 would be expected to exceed 3.841 
only 5% of the time.

Because the observed value of χ2 for the counseling 
study in Table 5-1, 20.854, exceeds this critical value of 
3.841, we conclude that the data in Table 5-1 are unlikely 
to occur if the null hypothesis that the counseling has no 
effect on filing advance directives was true. We report that 
counseling leads to higher rates of homeless people filing 
advance directives (P < .05).

Like all the other procedures we have been using to test 
hypotheses, however, when we reject the null hypothesis 
of no association at the 5% level, we are implicitly willing 
to accept the fact that, in the long run, about 1 reported 
effect in 20 will be due to random variation rather than a 
real treatment effect.

In contrast, the data in Table 5-3 seem very compatible 
with the null hypothesis that the warming technique did 

not have any effect on mortality in extremely low birth 
weight infants. 

Of course, neither of these studies proves that the in-
person counseling session did or did not have an effect on 
homeless people filing advanced directives or use of poly-
ethylene bags had an effect on extreme low birth weight 
infant mortality. What they show is that in the first exam-
ple the pattern of the observations is unlikely to arise if the 
counseling session did not have an effect, whereas in the 
second example the pattern of observations is likely to 
arise if the polyethylene bag produced the same mortality 
rate as conventional warming techniques.

As with all theoretical distributions of test statistics 
used for testing hypotheses, there are assumptions built 
into the use of χ2. For the resulting theoretical distribution 
to be reasonably accurate, the expected number of individu-
als in all the cells must be at least 5.* (This is essentially the 
same as the restriction on the z test in the last section.)

Like most test statistics, the distribution of χ2 depends 
on the number of treatments being compared. It also 
depends on the number of possible outcomes. This 
dependency is quantified in a degrees of freedom parameter 

*When the data do not meet this requirement, one should use the Fisher 
exact test, discussed later in this chapter.

FIGURE 5-7. The χ2 distribution with 1 
degree of freedom. The shaded area denotes 
the biggest 5% of possible values of the χ2 
test statistic when there is no relationship 
between the treatments and observations.
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n equal to the number of rows in the table minus 1 times 
the number of columns in the table minus 1

v r c= − −( )( )1 1

where r is the number of rows and c is the number of col-
umns in the table. For the 2 × 2 tables we have been dealing 
with so far, n = (2 – 1) (2 – 1) = 1. 

Table 5-5 presents a table of critical values for the χ2 test 
statistic. The critical value that defines the .1% largest val-
ues of χ2 under the assumption that the null hypothesis is 
true with ν = 1 degree of freedom is 10.828. The value asso-
ciated with our data on the effects of in-person counseling 
on filing advance directives is 20.854, which exceeds this 
value. Consequently, we can reject the null hypothesis of 
no effect and conclude that in-person counseling increases 
the likelihood that a homeless person will file an advance 
directive (P < .001).

Likewise, the value of χ2 for the study of the value of 
polyethylene wraps for extremely low birth weight infants 
was only .282, which is smaller than the value of .455 which 
defines the upper half of the χ2 distribution with 1 degree 
of freedom, so we do not come close to rejecting the null 
hypothesis that the polyethylene wrap is no better than tra-
dition warming methods in terms of infant mortality.

This study illustrates the importance of looking at out-
comes in clinical trials. The human body has tremendous 
capacity to adapt not only to disease but also to medical 
manipulation. Therefore, simply showing that some inter-
vention (such as a difference in warming technique) 
changed a patient’s physiological state (by producing differ-
ent body temperature) does not mean that in the long run 
it will make any difference in the clinical outcome. Focusing 
on these intermediate variables, often called process vari-
ables, rather than the more important outcome variables 
may lead you to think something made a clinical difference 
when it did not. For example, in this study there was the 
expected change in the process variable, skin temperature, 
but not the outcome variable, mortality. If we had stopped 
with the process variables we might have concluded that 
the polyethylene wrap was superior to traditional warming 
methods, even though the choice of warming method does 
not appear to have affected the most important variable, 
whether or not the infant survived.

Keep this distinction in mind when reading medical 
journals and listening to proponents argue for their tests, 
procedures, and therapies. It is much easier to show that 
something affects process variables than the more important 
outcome variables. In addition to being easier to produce a 

demonstrable change in process variables than outcome 
variables, process variables are generally easier to measure. 
Observing outcomes may require following the patients for 
some time and often present difficult subjective problems of 
measurement, especially when one tries to measure “quality 
of life” variables. Nevertheless, when assessing whether or 
not some new procedure deserves to be adopted in an era of 
limited medical resources, you should seek evidence that 
something affects the patient’s outcome. The patient and the 
patient’s family care about outcome, not process.

The Yates Correction for Continuity
As with the z test statistic discussed earlier in this chapter, 
when analyzing 2 × 2 contingency tables (ν = 1), the value 
of χ2 computed using the formula above and the theo-
retical χ2 distribution leads to P values that are smaller 
than they ought to be. Thus, the results are biased toward 
concluding that the treatment had an effect when the evi-
dence does not support such a conclusion. The mathe-
matical reason for this problem has to do with the fact 
that the theoretical χ2 distribution is continuous whereas 
the set of all possible values that the χ2 test statistics can 
take on is not. To obtain values of the test statistic that are 
more compatible with the critical values computed from 
the theoretical χ2 distribution when ν = 1, apply the Yates 
correction (or continuity correction) to compute a cor-
rected χ2 test statistic according to

χ 2
1

2
2

=
− −∑( )� �O E

E

This correction slightly reduces the value of χ2 asso-
ciated with the contingency table and compensates for 
the mathematical problem just described. The Yates cor-
rection is used only when ν = 1, that is, for 2 × 2 tables.

To illustrate the use and effect of the continuity correc-
tion, let us recompute the value of χ2 associated with the 
data on counseling and filing of advance directives in 
Table 5-1. From the observed and expected frequencies in 
Tables 5-1 and 5-2, respectively,
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� TABLE 5-5. Critical Values for the χ2
 Distribution

Probability of Greater Value P

ν .50 .25 .10 .05 .025 .01 .005 .001

1 .455 1.323 2.706 3.841 5.024 6.635 7.879 10.828
2 1.386 2.773 4.605 5.991 7.378 9.210 10.597 13.816
3 2.366 4.108 6.251 7.815 9.348 11.345 12.838 16.266
4 3.357 5.385 7.779 9.488 11.143 13.277 14.860 18.467
5 4.351 6.626 9.236 11.070 12.833 15.086 16.750 20.515
6 5.348 7.841 10.645 12.592 14.449 16.812 18.548 22.458
7 6.346 9.037 12.017 14.067 16.013 18.475 20.278 24.322
8 7.344 10.219 13.362 15.507 17.535 20.090 21.955 26.124
9 8.343 11.389 14.684 16.919 19.023 21.666 23.589 27.877

10 9.342 12.549 15.987 18.307 20.483 23.209 25.188 29.588
11 10.341 13.701 17.275 19.675 21.920 24.725 26.757 31.264
12 11.340 14.845 18.549 21.026 23.337 26.217 28.300 32.909
13 12.340 15.984 19.812 22.362 24.736 27.688 29.819 34.528
14 13.339 17.117 21.064 23.685 26.119 29.141 31.319 36.123
15 14.339 18.245 22.307 24.996 27.488 30.578 32.801 37.697
16 15.338 19.369 23.542 26.296 28.845 32.000 34.267 39.252
17 16.338 20.489 24.769 27.587 30.191 33.409 35.718 40.790
18 17.338 21.605 25.989 28.869 31.526 34.805 37.156 42.312
19 18.338 22.718 27.204 30.144 32.852 36.191 38.582 43.820
20 19.337 23.828 28.412 31.410 34.170 37.566 39.997 45.315
21 20.337 24.935 29.615 32.671 35.479 38.932 41.401 46.797
22 21.337 26.039 30.813 33.924 36.781 40.289 42.796 48.268
23 22.337 27.141 32.007 35.172 38.076 41.638 44.181 49.728
24 23.337 28.241 33.196 36.415 39.364 42.980 45.559 51.179
25 24.337 29.339 34.382 37.652 40.646 44.314 46.928 52.620
26 25.336 30.435 35.563 38.885 41.923 45.642 48.290 54.052
27 26.336 31.528 36.741 40.113 43.195 46.963 49.645 55.476
28 27.336 32.020 37.916 41.337 44.461 48.278 50.993 56.892
29 28.336 33.711 39.087 42.557 45.722 49.588 52.336 58.301
30 29.336 34.800 40.256 43.773 46.979 50.892 53.672 59.703
31 30.336 35.887 41.422 44.985 48.232 52.191 55.003 61.098
32 31.336 36.973 42.585 46.194 49.480 53.486 56.328 62.487
33 32.336 38.058 43.745 47.400 50.725 54.776 57.648 63.870
34 33.336 39.141 44.903 48.602 51.966 56.061 58.964 65.247
35 34.336 40.223 46.059 49.802 53.203 57.342 60.275 66.619
36 35.336 41.304 47.212 50.998 54.437 58.619 61.581 67.985
37 36.336 42.383 48.363 52.192 55.668 59.893 62.883 69.346
38 37.335 43.462 49.513 53.384 56.896 61.162 64.181 70.703
39 38.335 44.539 50.660 54.572 58.120 62.428 65.476 72.055
40 39.335 45.616 51.805 55.758 59.342 63.691 66.766 73.402
41 40.335 46.692 52.949 56.942 60.561 64.950 68.053 74.745
42 41.335 47.766 54.090 58.124 61.777 66.206 69.336 76.084
43 42.335 48.840 55.230 59.304 62.990 67.459 70.616 77.419
44 43.335 49.913 56.369 60.481 64.201 68.710 71.893 78.750
45 44.335 50.985 57.505 61.656 65.410 69.957 73.166 80.077
46 45.335 52.056 58.641 62.830 66.617 71.201 74.437 81.400
47 46.335 53.127 59.774 64.001 67.821 72.443 75.704 82.720
48 47.335 54.196 60.907 65.171 69.023 73.683 76.969 84.037
49 48.335 55.265 62.038 66.339 70.222 74.919 78.231 85.351
50 49.335 56.334 63.167 67.505 71.420 76.154 79.490 86.661

Adapted from Zar JH. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984, 479–482:table B.1, by permission of Pearson 
Education, Inc., Upper Saddle River, NJ.
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Note that this value of χ2 is smaller than the uncor-
rected value, although the effect is so large that even the 
smaller value of χ2 still exceeds the critical value that 
defines the largest .1% of the χ2 distribution with 1 degree 
of freedom, 10.282, so we still reject the null hypothesis of 
no effect (P < .001), as before. This situation is not always 
the case; when the effect or sample sizes are smaller than 
in this example including the Yates correction can affect 
the P value and even whether or not the result reaches 
conventional statistical significance.

You should always include the Yates continuity correc-
tion when analyzing 2 × 2 contingency tables.

  �CHI-SQUARE APPLICATIONS TO 
EXPERIMENTS WITH MORE THAN  
TWO TREATMENTS OR OUTCOMES

It is easy to generalize what we have just done to analyze 
the results of experiments with more than two treatments 
or outcomes. The z test we developed earlier in this chap-
ter will not work for such studies.

There is a chronic shortage of donated organs. To 
develop better educational programs on organ donation 
for medical students Teresa Edwards and colleagues* sur-
veyed 439 students in three Ohio medical schools to inves-
tigate whether there were any racial or ethnic differences 
in attitudes toward organ donation. Table 5-6 shows the 
results for whether the students had already signed an 
organ donation card. Are these data consistent with the 
null hypothesis that race/ethnicity is not related to having 
signed an organ donation card?

We compute the expected numbers in each cell assum-
ing that the null hypothesis is true just as we did before. 
Three hundred forty-four of the 439 students, 344/439 = 
78.36%, signed donor cards. Thus, if race/ethnicity does 
not affect the likelihood that a student signed a donor 
card, then we would expect 78.36% of the 347 white stu-
dents (271.90 students), 78.36% of the 57 Asian students 
(44.67 students) and 78.36% of the 35 Black students 
(27.43 students) in the sample to have signed donor cards, 
with the remaining students in each group not signing 
donor cards (Table 5-7).

We now compute the c2 test statistic as before. (Because 
this is not a 2 × 2 table, we do not need to include the Yates 
correction.)
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The contingency table in Table 5-6 has three rows and 
two columns, so the χ2 test statistic has

ν = (r – 1) (c – 1) = (3 – 1) (2 – 1) = 2

degrees of freedom associated with it. Table 5-5 shows that 
χ2 will exceed 38.186 less than .1% of the time when the 
difference between the observed and expected frequencies 
is due to random variation rather than an effect of the 
sample group (in this case, race/ethnicity). Thus, we con-
clude that there is a significant difference in the likelihood 
that a student will have signed a donor card, depending on 
his or her race/ethnicity.

  �TABLE 5-6. Medical Students Who Signed Organ 
Donation Cards

Race/Ethnicity Yes No Total

White 290 57 347
Asian   40 17  57
Black   14 21  35

 T otal 344 95 439

*Edwards TM, Essmna C, Thornton JD. Assessing racial and ethnic dif-
ferences in medical student knowledge, attitudes and behaviors regarding 
organ donation. J Natl Med Assoc. 2007;99:131–137.

  �TABLE 5-7. Expected Number of Students Who 
Signed Organ Donation Cards if Race/Ethnicity 
Did Not Matter*

Race/Ethnicity Yes No Total

White 271.90 75.10 347
Asian   44.67 12.33   57
Black   27.43   7.57   35

 T otal     344.00            95.00     439
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Note, however, that we do not know where this differ-
ence comes from. Answering that question will require 
doing multiple comparisons. 

Let us now sum up how to use the χ2 statistic:

•	 Tabulate the data in a contingency table.
•	 Sum the number of individuals in each row and each col-

umn and figure the percentage of all individuals who fall 
in each row and column, independent of the column or 
row in which they fall.

•	 Use these percentages to compute the number of people 
that would be expected in each cell of the table if the treat-
ment had no effect.

•	 Summarize the differences between these expected 
frequencies and the observed frequencies by computing 
χ 2. If the data form a 2 × 2 table, include the Yates 
correction.

•	 Compute the number of degrees of freedom associated 
with the contingency table and use Table 5-5 to see 
whether the observed value of χ2 exceeds what would be 
expected from random variation.

Recall that when the data fell into a 2 × 2 contingency 
table, all the expected frequencies had to exceed about 5 
for the χ2 test to be accurate. In larger tables, most statisti-
cians recommend that the expected number of individu-
als in each cell never be less than 1 and that no more than 
20% of cells be less than 5. When this is not the case, the 
χ2 test can be quite inaccurate. The problem can be rem-
edied by collecting more data to increase the cell numbers 
or by reducing the number of categories to increase the 
numbers in each cell of the table.

Multiple Comparisons
Because the contingency table has two columns, we can 
subdivide it into three 2 × 2 contingency tables to do all 
pairwise comparisons, just as we did following rejecting 
the null hypothesis in analysis of variance. As then, we can 
use Bonferroni, Holm or Holm-Sidak corrections to 
determine if individual comparisons are significant. The 
reason that we can use these corrections is because they all 
adjust the critical value of P required to reject individual 
pairwise (or comparisons against a single control group) 
based on considerations of how the risks of erroneously 
rejecting the null hypothesis accumulate as we do multiple 
comparisons. The values of Pcrit depend on the overall 
family error rate one seeks to control (α T) and the num-
ber of comparisons (k), but not the details of how one 

obtained the individual P values that are compared to Pcrit. 
In fact, the Bonferroni, Holm and Holm-Sidak procedures 
can be applied to control the family error rate for any col-
lection of hypothesis tests that you wish to consider a fam-
ily of comparisons.

To apply this general principle to the problem of iden-
tifying what difference or differences between the racial/
ethnic groups in Table 5-6 led us to reject the null hypoth-
esis of no difference in the likelihood of a student having 
a donor card, we first test for differences in each of the 
three 2 × 2 tables we can construct from Table 5-6. Box 5-1 
shows these three tables and the associated χ2 test statis-
tics. (Note that we have to include the Yates correction 
because these are 2 × 2 tables.) 

Once we have the values of χ2 associated with each of 
these three pairwise comparisons, we can determine 
whether or not they are big enough to reject the null 
hypothesis of no difference for the individual compari-
sons, while controlling the overall family error rate at α T 

= 5%. As when we used the Holm-Sidak correction with 
t tests following a significant analysis of variance, we order 
the comparisons according to descending values of the χ2 
associated with each comparison (Table 5-8). In each case, 
the P value exceeds the Holm-Sidak Pcrit, so we conclude 
that each racial/ethnic group has significantly different 
rates of signing organ donor cards from the other two, 
with 84% of whites, 70% of Asians and 40% of Blacks 
signing the donor cards.

There is no generally accepted procedure for subdivid-
ing contingency tables that are 3 × 3 or larger.

  THE FISHER EXACT TEST

The χ2 test can be used to analyze 2 × 2 contingency tables 
when each cell has an expected frequency of at least 5. In 
small studies, when the expected frequency is smaller than 
5, the Fisher exact test is the appropriate procedure. This 
test turns the liability of small sample sizes into a benefit. 
When the sample sizes are small, it is possible to simply list 
all the possible arrangements of the observations, and 
then compute the exact probabilities associated with each 
possible arrangement of the data. The total (two-tailed) 
probability of obtaining the observed data or more 
extreme patterns in the data is the P value associated with 
the hypothesis that the rows and columns in the data are 
independent.

The Fisher exact test begins with the fact that the 
probability of observing any  given pattern in the 2 × 2 
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The are three 2 × 2 contingency tables; note that the marginal sums are only based on the two groups of students 
represented in each table. There is n = 1 degree of freedom associated with each table, which can be used to look 
up the appropriate P value for each comparison in Table 5-8.
White vs. Asian Students

Race/Ethnicity Yes No Total
White 290 57 347
Asian   40 17   57

 T otal 330 74 404

Overall 330/404 = 81.68% of students signed advance directives, so under the null hypothesis we expect 
81.68% of the 347 white students (283.44) and 81.68% of the 57 Asian students (63.56) to have advanced 
directives, so
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White vs. Black Students

Race/Ethnicity Yes No Total
White 290 57 347
Black   14 21  35

 T otal 304 78 382

Overall, 304/382 = 79.58% of students had advance directives, to

χW

(| | ) (| . | )
.vs

O E

EB
2

1
2

2 1
2

2290 276 15
276

=
− −

+
− −

115
57 70 85

70 85

14 27 85

1
2

2

1
2

2

∑ +
− −

+
− −

(| . | )
.

(| . | )
227 85

21 7 15
7 15

34 515 001
1

2
2

.
(| . | )

.
. ; .+

− −
= <P

Asian vs. Black

Race/Ethnicity Yes No Total
Asian 40 17 57
Black 14 21 35

 T otal 54 38 92

Likewise, 
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Box 5-1 • All Pairwise Multiple Comparisons for Effects of Race/Ethnicity on Having Signed an Advance 
Directive for Organ Donation
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contingency table with the observed row and column 
totals in Table 5-9 is

p

R R C C

N

O O O O
=

1 2 1 2

11 12 21 22

! ! ! !

!

! ! ! !

where O11, O12, O21 and O22 are the observed frequencies 
in the four cells of the contingency table, C1 and C2 are the 
sums of the two columns, R1 and R2 are the sums of 
the two rows, N is the total number of observations, and 
the exclamation mark “!” indicates the factorial operator.*

Unlike the χ2 test statistic, there are one- and two-
tailed versions of the Fisher exact test. Unfortunately, 
most descriptions of the Fisher exact test simply describe 
the one-tailed version and many computer programs 
compute the one-tailed version without clearly identifying 
it as such. Because many researchers do not recognize this 
issue, results (i.e., P values) may be reported for a single 
tail without the researchers realizing it. 

To determine whether or not investigators recognized 
whether they were using one- or two-tailed Fisher exact 
tests, W. Paul McKinney and colleagues† examined the use 
of the Fisher exact test in papers published in the medical 
literature to see whether or not the authors noted the type 
of Fisher exact test that was used. Table 5-10 shows the 
data for the two journals: New England Journal of Medicine 
and The Lancet. Because the numbers are small, χ2 is not 
an appropriate test statistic. From the equation above, the 

probability of obtaining the pattern of observations in 
Table 5-10 for the given row and column totals is

p = =

9 14 11 12

23

1 8 10 4
00666

! ! ! !

!

! ! ! !
.

Thus, it is very unlikely that this particular table would 
be observed. To obtain the probability of observing a pat-
tern in the data this extreme or more extreme in the direc-
tion of the table, reduce the smallest observation by 1, and 
recompute the other cells in the table to maintain the row 
and column totals constant.

  �TABLE 5-8. Pairwise Comparisons of Sperm Motility in Rabbit Cell Phone Experiment using Holm-Sidak 
Adjustment (Family Error Rate, aT = 0.05)

Comparison x2 P j Pcrit 5 aT /(k - j + 1) P < Pcrit?

White vs. Black 34.515 <.001 1 .0170 Yes
Asian vs. Black   6.947 <.010 2 .0253 Yes
White vs. Asian   5.012 <.050 3 .0500 Yes

n = 1 degree of freedom; k = 3 comparisons.

  TABLE 5-9. Notation for the Fisher Exact Test

Row Totals

O11 O12 R1

O21 O22 R2

Column Total C1 C2 N

*The definition n! is n! = (n) (n – 1)(n – 2) × . . . × (2)(1); e.g., 5! = 5 × 4 
× 3 × 2 × 1.
†McKinney WP, Young MJ, Harta A, Lee MB. The inexact use of Fisher’s 
exact test in six major medical journals. JAMA. 1989;261:3430–3433.

  �TABLE 5-10. Reporting of Use of Fisher Exact 
Test in the New England Journal of Medicine and 
the Lancet

Test Identified?

Group Yes No Total

New England Journal  
of Medicine

  1   8   9

The Lancet 10   4 14

 T otal 11 12 23
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In this case, there is one more extreme table, given in 
Table 5-11. This table has a probability of occurring of

p = =

9 14 11 12

23

9 0 3 11
00027

! ! ! !

!

! ! ! !
.

(Note that the numerator only depends on the row and 
column totals associated with the table, which does not 
change, and so only needs to be computed once.) Thus, 
the one-tailed Fisher exact test yields a P value of P = 
.00666 + .00027 = .00693. This probability represents the 
probability of obtaining a pattern of observations as 
extreme or more extreme in one direction as the actual 
observations in Table 5-10.

To find the other tail, we list all the remaining pos-
sible patterns in the data that would give the same row 
and column totals. These possibilities, together with the 
associated probabilities, appear in Table 5-12. These 
tables are obtained by taking each of the remaining 
three elements in Table 5-10 one at a time and progres-
sively making it smaller by one, then eliminating the 
duplicate tables. Two of these tables have probabilities 
at or below the probability of obtaining the original 
observations, .00666: the ones with probabilities of 
.00242 and .00007. These two tables constitute the 
“other” tail of the Fisher exact test. There is a total 

  �TABLE 5-11. More Extreme Pattern of 
Observations in Table 5-11, Using Smallest 
Observed Frequency (in This Case, 1)

Test Identified?

Group Yes No Total

New England Journal 
of Medicine

  0   9   9

The Lancet 11   3 14

 T otals 11 12 23

  TABLE 5-12. Other Patterns of Observations in Table 5-11 with the Same Row and Column Totals

Total Total

  2   7   9   6   3   9
  9   5 14   5   9 14

 T otal 11 12 23 Total 11 12 23
P = .05330 P = .12438

Total Total

  3   6   9   7   2   9
  8   6 14   4 10 14

 T otal 11 12 23 Total 11 12 23
P = .18657 P = .02665

Total Total

  4   5   9   8   1   9
  7   7 14   3 11 14

 T otal 11 12 23 Total 11 12 23
P = .31983 P = .00242

Total Total

  5   4   9   9   0   9
  6   8 14   2 12 14

 T otal 11 12 23 Total 11 12 23
P = .27985 P = .00007
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probability of being in this table of .00242 + .00007 = 
.00249.* Thus, the total probability of obtaining a pat-
tern of observations as extreme or more extreme than 
that observed is P = .00693 + .00249 = .00942, and we 
conclude there is a significant difference in the correct 
presentation of the Fisher exact test in the New England 
Journal of Medicine and The Lancet (P = .009). Indeed, it 
is important when reading papers that use the Fisher 
exact test to make sure the authors know what they are 
doing and report the results appropriately.

Let us now sum up how to do the Fisher exact test:

•	 Compute the probability associated with the observed 
data.

•	 Identify the cell in the contingency table with the smallest 
frequency.

•	 Reduce the smallest element in the table by 1 and then 
compute the elements for the other three cells so that the 
row and column sums remain constant.

•	 Compute the probability associated with the new table.
•	 Repeat this process until the smallest element becomes its 

lowest possible value, which is often but not always zero.
•	 List the remaining tables by repeating this process for the 

other three elements.† List each pattern of observations 
only once.

•	 Sequentially compute the probabilities associated with the 
tables from most extreme to least extreme until reaching a 
table that has a probability greater than the observed re-
sult.

•	 Add all the probabilities together that are equal to or 
smaller than the probability associated with the observed 
data.

This probability is the two-tail probability of observing 
a pattern in the data as extreme or more extreme than 
observed. Many computer programs show P values for the 
Fisher exact test, without clearly indicating whether they 
are one- or two-tail values. Make sure that you know 
which value is being reported before you use it in your 
work; the two-tailed P value is generally the one you want.

  �MEASURES OF ASSOCIATION BETWEEN 
TWO NOMINAL VARIABLES

In addition to testing whether there are significant differ-
ences between two rates or proportions, people often want 
a measure of the strength of association between some 
event and different treatments or conditions, particularly 
in clinical trials and epidemiological studies. In a prospective 
clinical trial, such as the study of the effect of in-person 
counseling on filing of advanced directives by homeless 
people discussed earlier in this chapter (Table 5-1), inves-
tigators randomly assign people to treatment (in-person 
counseling) or control (written materials only), then fol-
lowed them to see whether they filed an advance directive 
or not. In that example, 38% (55 out of 145) of the people 
receiving in-person counseling filed advance directives 
and 13% (15 out of 117) of the people receiving written 
materials filed advanced directives. These proportions are 
estimates of the probability of filing an advanced directive 
associated with each of these treatments; these results 
indicate that the probability of filing an advance directive 
was nearly tripled by in-person counseling. We will now 
examine different ways to quantify this effect: relative risk 
and odds ratio.

Prospective Studies and Relative Risk
We quantify the size of the association between treat-
ment and outcome with the relative risk, RR, which is 
defined as

RR
Probability of event in group

P
= treatment

rrobability of event in in groupcontrol

For the advanced directive study, in which 37.9 of peo-
ple who received in-person counseling completed the 
advance directives and 12.8% of people who just received 
written instructions did so,

RR
ˆ

ˆ
.

.
.counsel

written

= = =
p

p

379

128
2 92

The fact that the relative risk exceeds 1 indicates that 
in-person counseling increases the likelihood (“risk”) that 
a homeless person will file an advance directive. In clinical 
trials evaluating treatments against placebo (or standard 
treatment, when it would be unethical to administer a pla-
cebo) and the outcome is a negative event (such as death 
or disease recurrence), a relative risk of less than 1 indi-
cates that the treatment leads to better outcomes.

*Note that the two tails have different probabilities; this is generally the 
case. The one exception is when either the two rows or two columns 
have the same sums, in which case the two-tail probability is simply 
twice the one-tail probability. Some books say that the two-tail value of 
P is always simply twice the one-tail value. This is not correct unless the 
row or column sums are equal.
†Many of these computations can be avoided, see Appendix A.
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In an epidemiological study, the probability of an event 
among people exposed to some potential toxin or risk fac-
tor is compared to people who are not exposed. The calcu-
lations are the same as for clinical trials.*

Relative risks greater than 1 indicate that exposure to 
the toxin increases the risk of disease. For example, breath-
ing secondhand smoke is associated with a relative risk of 
heart disease in nonsmokers of 1.3,† indicating that non-
smokers married to smokers are 1.3 times more likely to 
die from heart disease as nonsmokers married to non-
smokers (and so not breathing secondhand smoke at 
home).

Table 5-13 shows the general layout for a calculation of 
relative risk; it is simply a 2 × 2 contingency table. The 
probability of an event in the treatment group (also called 
the experimental event rate) is nTD/nT and the probability 
of an event in the control group (also called the control 
event rate) is nCD/nC. Therefore, the formula for relative 
risk is

RR
/

/
TD T

CD C

=
n n

n n

  �TABLE 5-13. Arrangement of Data to Compute 
Relative Risk

Number of People

Sample Group Disease No Disease Total

Treated (or exposed 
to risk factor)

nTD nTN nT

Control (or not 
exposed to risk 
factor)

nCD nCN nC

  Total nD nN

This formula is simply a restatement of the definition 
of relative risk presented above.

Using the results of the advance directives trial in Table 
5-1, we compute

RR
/( )

/( )

.

.
.= +

+
= =55 55 90

15 15 102

38

13
2 92

The most common null hypothesis that people wish to 
test related to relative risks is that the relative risk equals 1 
(i.e., that the treatment or risk factor does not affect event 
rate). Although it is possible to test this hypothesis using 
the standard error of the relative risk, most people simply 
apply a χ2 test to the contingency table used to compute 
the relative risk.‡

To compute a relative risk, the data must be collected 
as part of a prospective study in which people are random-
ized to treatment or control or subjects in an epidemio-
logical study§ are followed forward in time after they are 
exposed (or not exposed) to the toxin or risk factor of 
interest. It is necessary to conduct the study prospectively 
to estimate the absolute event rates in people in the treat-
ment (or exposed) and control groups.

Absolute Risk Increase (or Reduction) and 
Number Needed to Treat
Another way to quantify this difference is to present the 
absolute risk increase, which is simply the difference of the 
probability of an event (in this case, filing an advance 
directive) with and without the treatment (in-person 
counseling), .38 - .13 = .25. The in-person counseling 
increases the probability that a homeless person will file 
an advanced directive by .25. This information can also  
be used to compute the number needed to treat, which is 
the number of people that would have to be treated to 
have one additional event. The number needed to treat is 
simply 1 divided by the absolute risk increase, in this case 
1/.25 = 4. Thus, one would expect to have one additional 
advance directive filed for each 4 homeless people that 
receives in-person counseling. If studying a clinical inter-
vention that reduces the risk of an adverse event, we 

*In clinical trials and epidemiological studies one often wants to adjust 
for other so-called confounding variables that could be affecting the prob-
ability of an event. It is possible to account for such variables using mul-
tivariate techniques using logistic regression or Cox proportional hazards 
regression. For a discussion of these issues, see Glantz SA, Slinker BK. 
Regression with a qualitative dependent variable. Primer of Applied Re-
gression and Analysis of Variance, 2nd ed. New York: McGraw Hill; 
2001:chap 12.
†Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: 
nearly as large as smoking. Circulation. 2005;24:111:2684–2698.

‡Traditionally, direct hypothesis testing of relative risks is done by exam-
ining confidence intervals, see Chapter 7.
§Prospective epidemiological studies are also called cohort studies.
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compute the absolute risk reduction and the number 
needed to treat (1 divided by the absolute risk reduction) 
is the number of people that need to be treated to avoid 
one adverse event. 

Number needed to treat is often used as a measure of 
the cost-effectiveness of a treatment. With a large clinical 
trial it is often possible to detect small benefits of a ther-
apy. When the benefits of the control therapy are small 
but positive with the new therapy being studied, it is 
possible that the relative risk (in this case, the benefit) 
for the new therapy will be larger even though the abso-
lute risk improvement is small and, so, the number 
needed to treat to obtain one additional successful out-
come is very large. If the therapy is very expensive or has 
serious side effects, it may not be sensible to use the ther-
apy even though it produces a statistically significant 
improvement in outcomes.

Case-Control Studies and the Odds Ratio
Prospective studies are often difficult and expensive to do, 
particularly if it takes several years for events to occur after 
treatment or exposure. It is, however, possible to conduct 
a similar analysis retrospectively based on so-called case-
control studies.

Unlike prospective studies, case-control studies are 
done after the fact. In a case-control study, people who 
experienced the outcome of interest are identified and the 
number exposed to the risk factor of interest are counted. 
These people are the cases. You then identify people who 
did not experience the outcome of interest, but are similar 
to the cases in all other relevant ways and count the num-
ber that were exposed to the risk factor. These people are 
the controls. (Often investigators include more than one 
control per case in order to increase the sample size.) 
Table 5-14 shows the layout for data from a case-control 
study.

This information can be used to compute a statistic 
similar to the relative risk known as the odds ratio. The 
odds ratio, OR, is defined as

OR
Odds

Odds
= of exposure in

of exposur

cases

ee in controls

The proportion of cases (people with the disease) 
exposed to the risk factor is nED/nD and the proportion of 
cases not exposed to the risk factor is nUD/nD. (Note that 

each of the denominators is appropriate for the numera-
tor; this situation would not exist if one was using case-
control data to compute a relative risk.) The odds of 
exposure in the cases is the ratio of these two percentages:

Odds
/

/
ED D

D

EDof exposure in
UD

cases
n n

n n

n

n
= =

UUD

Likewise, the odds of exposure in the controls is

Odds
/

/
N

UN N

of exposure in ENcontrols
n n

n n

n
= = EEN

UNn

Finally, the odds ratio is

OR
/

/
ED UD

EN UN

ED UN

UD UN

= =
n n

n n

n n

n n

Because the number of controls (nEN and nUN in Table 
5-14) depends on how the investigator designs the study, 
you cannot use data from a case-control study to compute 
a relative risk. In a case-control study the investigator 
decides how many subjects with and without the disease 
will be studied. This is the opposite of the situation in 
prospective studies (clinical trials and epidemiological 
cohort studies), when the investigator decides how many 
subjects with and without the risk factor will be included 
in the study. The odds ratio may be used in both case-
control and prospective studies, but must be used in case-
control studies.

  �TABLE 5-14. Arrangement of Data to Compute 
Odds Ratio

Number of People

Sample Group
Disease  
“Cases”

No Disease  
“Controls”

Exposed to risk factor  
(or treatment)

nED nEN

Unexposed to risk factor  
(or treatment)

nUD nUN

 T otal nD nN
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While the odds ratio is distinct from the relative risk, 
the odds ratio is a reasonable estimate of the relative risk 
when the number of people with the disease is small com-
pared to the number of people without the disease.*

As with the relative risk, the most common null 
hypothesis that people wish to test related to relative risks 
is that the odds ratio equals 1 (i.e., that the treatment or 
risk factor does not affect the event rate). While it is pos-
sible to test this hypothesis using the standard error of the 
odds ratio, most people simply apply a χ2 test to the con-
tingency table used to compute the odds ratio.†

Passive Smoking and Breast Cancer
Breast cancer is the second leading cause of cancer death 
among women (behind lung cancer). Smoking could 
cause breast cancer because of the cancer-causing chem-
icals in the smoke that enter the body and some of these 
chemicals appear in breast milk, indicating that they 
reach the breast. To examine whether exposure to sec-
ondhand tobacco smoke increased the risk of breast 
cancer in lifelong nonsmokers, Kenneth Johnson and 
colleagues‡ conducted a case-control study using cancer 
registries in Canada to identify premenopausal women 
with histologically confirmed invasive primary breast 
cancer. They contacted the women and interviewed 
them about their smoking habits and exposure to sec-
ondhand smoke at home and at work. They obtained a 
group of controls who did not have breast cancer, 
matched by age group, from a mailing to women using 

*In this case, the number of people who have the disease, nTD and nCD, is 
much smaller than the number of people without the disease, nTN and 
nCN, so nT = nTD + nTN ≈ nTN and nC = nCD + nCN  ≈ nCN. As a result,

RR OR

TD

CD

C

TD

TN

CD

CN

TD CN

CD TN

= ≈ = =

n
n

n
n

n
n

n
n

n n

n n

T

Because nTD = nED, nTN = nEN, nCD = nUD, and nCN = nUN. For a more 
detailed and practical discussion of how the odds ratio and relative risk 
relate to each other, see Guyat GG, Rennie D, Meade MO, Cook DJ. 
Understanding the results: more about odds ratios. In: Users’ Guide to the 
Medical Literature, 2nd ed. New York: McGraw-Hill; 2008:chap 10.2.
†Direct hypothesis testing regarding odds ratios is usually done with con-
fidence intervals; see Chapter 7.
‡Johnson KC, Hu J, Mao Y, Canadian Cancer Registries Epidemiology 
Research Group. Passive and active smoking and breast cancer risk in 
Canada, 1994–1997. Cancer Causes Control. 2000;11:211–221.

lists obtained from the provincial health insurance 
authorities. Table 5-15 shows the resulting data.

The fraction of women with breast cancer (cases) who 
were exposed to secondhand smoke is 50/(50 + 14) = 
0.781 and the fraction of women with breast cancer not 
exposed to secondhand smoke is 14/(50 + 14) = 0.218, so 
the odds of the women with breast cancer having been 
exposed to secondhand smoke is 0.781/0.218 = 3.58. Sim-
ilarly, the fraction of controls exposed to secondhand 
smoke is 43/(43 + 35) = 0.551 and the fraction not 
exposed to secondhand smoke is 35/(43 + 35) = 0.449, so 
the odds of the women without breast cancer having been 
exposed to secondhand smoke is 0.551/0.449 = 1.23. 
Finally, the odds ratio of breast cancer associated with 
secondhand smoke exposure is

OR

Odds of secondhand smoke
exposure in wom

=

een with
breast cancer

Odds of secondhand smooke
exposure in controls

= =3 58

1 23
2 91

.

.
.

Alternatively, we could use the direct formula for odds 
ratio and compute

OR .ED UN

UD UN

= = =⋅
⋅

n n

n n

50 35

14 43
2 91

Based on this study, we conclude that exposure to sec-
ondhand smoke increases the odds of having breast can-
cer by 2.91 times among this population. A χ2 analysis of 
the data in Table 5-15 shows that this difference is statisti-
cally significant (P = .007).

  TABLE 5-15. Passive Smoking and Breast Cancer

Number of People

Sample Group
Cases (Breast  

Cancer) Controls

Exposed to second-
hand smoke

50 43

Not exposed to second-
hand smoke

14 35

 T otal 64 78
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  TABLE 5-16. Characteristics of Swedish Adolescents Who Committed Suicide

Factor SDAM Group (n 5 44) Not in SDAM Group (n 5 62)

Violent death (shooting, hanging, jumping, traffic) 32 51
Suicide under influence of alcohol 36 25
Blood alcohol concentration (BAC) ≥ 150 mg/dL 17   3
Suicide during weekend 28 26
Parental divorce 20 15
Parental violence 14   5
Parental alcohol abuse 17 12
Paternal alcohol abuse 15   9

We now have the tools to analyze data measured on a 
nominal scale. So far we have been focusing on how to 
demonstrate a difference and quantify the certainty with 
which we can assert this difference or effect with the P 
value. Now we turn to the other side of the coin: What 
does it mean if the test statistic is not big enough to reject 
the hypothesis of no difference?

  PROBLEMS

5-1 Obtaining a blood sample of arterial blood permits 
measuring blood pH, oxygenation, and CO2 elimination 
in order to see how well the lungs are functioning at oxy-
genating blood. The blood sample is often drawn from an 
artery in the wrist, which can be a painful procedure. 
Shawn Aaron and colleagues*  compared the effectiveness 
of a topical anesthetic gel applied to the skin over the 
puncture point with a placebo cream. They observed 
adverse effects (redness, swelling, itching, or bruising) 
within 24 hours of administering the gel. Three of 36 
people receiving the anesthetic gel and 8 of 40 receiving 
the placebo gel suffered an adverse reaction. Is there evi-
dence of a difference in the rate of adverse effects between 
the anesthetic gel and the placebo gel?

5-2 Adolescent suicide is commonly associated with alcohol 
misuse. In a retrospective study involving Finnish adoles-
cents who committed suicide, Sami Pirkola and colleagues† 

*Aaron, et al. Topical tetracaine prior to arterial puncture: a randomized, 
placebo-controlled clinical trial. Respir Med. 2003;97:1195–1199.
†Pirkola, et al. Alcohol-related problems among adolescent suicides in 
Finland. Alcohol Alcohol. 1999;34:320–328.

compared situational factors and family background 
between victims who abused alcohol and those who did 
not. Alcohol use was determined by family interview sev-
eral months following the suicide. Adolescents with alco-
hol problems, ranging from mild to severe, were classified 
together in a group called SDAM (Subthreshold or Diag-
nosable Alcohol Misuse) and compared to victims with no 
such reported alcohol problems. Some of Pirkola’s find-
ings are shown in Table 5-16. Use these data to identify the 
characteristics of SDAM suicides. Are these factors specific 
enough to be of predictive value in a specific adolescent? 
Why or why not?

5-3 The 106 suicides analyzed in Prob. 5-2 were selected 
from 116 suicides that occurred between April 1987 and 
March 1988. Eight of the 10 suicides not included in the 
study were due to lack of family interviews. Discuss the 
potential problems, if any, associated with these exclu-
sions.

5-4 Major depression can be treated with medication, psy-
chotherapy or a combination of the two. M. Keller and 
colleagues‡ compared the efficacy of these approaches in 
outpatients diagnosed with a chronic major depressive 
disorder. Depression was diagnosed using the 24-item 
Hamilton Rating Scale for Depression, where a higher 
score indicates more severe depression. All subjects began 
the study with a score of at least 20. The investigators  

‡Keller M, et al. A comparison of nefazodone, the cognitive behavioral-
analysis system of psychotherapy, and their combination for the treat-
ment of chronic depression. N Engl J Med. 2000;342:1462–1470.



96 C hap t e r  5

randomly assigned patients who met study criteria to the 
three groups — medication (nefazodone), psychotherapy, 
or both — for 12 weeks then measured remission, defined 
as having a follow-up score of 8 or less after 10 weeks of 
treatment. The responses of the people they studied are 
shown in Table 5-17. Is there any evidence that the differ-
ent treatments produced different responses? If so, which 
one seems to work best?

  TABLE 5-17. Responses to Treatment of Depression

Treatment Remission No Remission

Nefazodone 36 131
Psychotherapy 41 132
Nefazodone and 

psychotherapy
75 104

  TABLE 5-18. Relationship between Tobacco 
Industry Funding and Concluding that Smokefree 
Laws Hurt the Hospitality Industry 

Funded by Tobacco 
Industry or an  
Industry Ally?

Study Conclusion

Negative  
Economic Effect

No Effect or  
Positive 
Effect

Yes 29   2
No   2 60

*Scollo M, et al. Review of the quality of studies on the economic effects 
of smoke-free policies on the hospitality industry. Tobacco Control. 
2003;12:13–20. 
†Yank V, et al. Financial ties and concordance between results and conclu-
sions in meta-analyses: retrospective cohort study. Br Med J. 2007;335:
1202–1205.

sions of meta-analyses of the efficacy of anti-hypertensive 
drugs and the source of funding for the analyses. Table 
5-19 presents their data.

‡The full guidelines, which are accepted by most medical journals, are 
available at: International Committee of Medical Journal Editors. Guide-
lines on authorship. BMJ. 1985;291:722.
§Flanagin  A, et al. Prevalence of articles with honorary authors and ghost 
authors in peer-reviewed medical journals. JAMA. 1998;280:222–224.

5-5 In debates over whether or not to pass legislation 
making all restaurants and bars smoke free opponents of 
the laws routinely claim that such laws harm the hospital-
ity industry economically and produce economic studies 
supporting this claim. To assess the association of funding 
for economic studies supporting this claim, Michelle 
Scollo and colleagues* tabulated the conclusions of the 
studies according to the funding source (Table 5-18). Does 
the data support the claim that tobacco industry funded 
studies are more likely to conclude that these laws would 
have negative economic effects? What is the odds ratio for 
a study concluding a negative economic effect having been 
supported by the tobacco industry or one of its allies?

5-6 Meta-analysis is an important way to summarize the 
biomedical literature because they pull together informa-
tion from many different studies to provide a quantitative 
estimate of the effect of a treatment or exposure to a toxin. 
As a result they are often widely cited an influential. To 
determine whether there are biases in meta-analyses sup-
ported by a single pharmaceutical company, Veronica 
Yank and colleagues† examined the results and conclu-

5-7 Authorship in biomedical publications establishes 
accountability, responsibility, and credit. The International 
Committee of Medical Journal Editors established author-
ship criteria in 1985, which boil down to playing an active 
role in the research and writing of the paper and being in a 
position to take responsibility for a paper’s scientific con-
tent.‡ Misappropriation of authorship undermines the 
integrity of the authorship system. There are two ways that 
authorship is misappropriated: honorary authorship, when 
someone (typically a department or division chair or the 
person who obtained funding for the project) who did not 
actually participate in preparing the paper, is listed as an 
author, and ghost authorship, when someone who played 
an important role in writing the paper is not listed as an 
author. To investigate the prevalence of honorary and ghost 
authorship in medical journals, Annette Flanagin and col-
leagues§ sent questionnaires to a random sample of corre-
sponding authors for papers published in three highly 
circulated general medical journals (Annals of Internal Med-
icine, Journal of the American Medical Association, and New 
England Journal of Medicine) and three specialty journals 
(American Journal of Cardiology, American Journal of Medi-
cine, and American Journal of Obstetrics and Gynecology). 
Their results are shown in Table 5-20. Are there differences 
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  TABLE 5-19. Relationship between Drug Company Funding and Conclusions of Meta-analyses on Effects of 
Their Drugs

Funding Source
Number of 
   Studies

Study Outcome

Number (%) with Favorable Results Number (%) with Favorable Conclusions

One drug company 49 27 (55%) 45 (92%)
All other* 75 49 (65%) 55 (73%)

*Includes studies supported by several drug companies, nonprofits, and papers where the source of funding was not stated.

  TABLE 5-20. Authorship Patterns in Several Well-regarded Journals

Journal
Total Number  

of Articles
Articles with  

Honorary Authors
Articles with  

Ghost Authors

American Journal of Cardiology 137 22 13
American Journal of Medicine 113 26 15
American Journal of Obstetrics and Gynecology 125 14 13
Annals of Internal Medicine 104 26 16
Journal of the American Medical Association 194 44 14
New England Journal of Medicine 136 24 22

in the patterns of honorary authorship and ghost author
ship among the different journals? Are there differences in 
patterns of honorary and ghost authorship between the 
specialty journals and large circulation generalist journals?

5-8 Dioxin is one of the most toxic synthetic environmen-
tal contaminants. An explosion at a herbicide plant in 
Sevaso, Italy in 1976 released large amounts of this long-
lasting contaminant into the environment. Because expo-
sure to dioxin during development is known to be 
dangerous, researchers have been carefully following the 
health status of exposed people and their children in 
Sevaso and surrounding areas. Peter Mocarelli and col-
leagues* measured the serum concentration of dioxin in 
potentially exposed parents and analyzed the number of 
male and female babies born after 1976. They found that 
when both parents were exposed to greater than 15 parts 
per trillion (ppt) of dioxin the proportion of girl babies 
born was significantly increased compared to couples not 
exposed to this amount of dioxin. Mocarelli and col-

*Mocarelli P, et al. Paternal concentrations of dioxin and sex ratio of 
offspring. Lancet. 2000;355:1858–1863.

leagues also investigated whether there were differences in 
the proportion of female babies born if only one parent 
was exposed to greater than 15 ppt of dioxin and whether 
the sex of the parent (mother or father) made a difference 
(Table 5-21). Are there differences in the proportion of 
female babies born when only one parent is exposed to 
greater than 15 ppt of dioxin?

5-9 Bipolar disorder is a disabling mental illness that is char-
acterized by episodes of elevated or irritable mood and 
depression. Lithium carbonate has been the standard therapy 
for treating bipolar disorder. In more recent years lithium has 
been replaced with sodium valproate because of a wider 
range of useful doses and fewer side effects. The BALANCE 
investigators* conducted a randomized open label (in which 
the subjects and investigators knew who was taking which 
drug) clinical trial comparing valproate in combination with 
lithium with valproate alone. The end point was having an 
emergent mood episode during a 24-month period. Fifty-
nine (54%) of the 110 people in the lithium group and 76 
(69%) of the 110 in the valproate group had events during 
follow-up. What is the relative risk for an event for people 
being treated with valproate compared to lithium (the tradi-
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tional treatment)? Is this difference statistically significant? 
What is the number needed to treat?

  TABLE 5-22. Relationship Between Three 
Diseases in Hospitalized Patients

Disease X No Disease X

Disease A 70 450
Disease B 52 180

5-11 Cigarette smoking is associated with increased inci-
dence of many types of cancers. Jian-Min Yuan and col-
leagues‡ wanted to investigate whether cigarette smoking 
was also associated with increased risk of renal cell cancer. 
They recruited patients with renal cell cancer from the Los 
Angeles County Cancer Surveillance Program to serve as 
cases in a retrospective case-control study. Control sub-
jects without renal cell cancer were matched on sex, age 
(within 5 years), race, and neighborhood of residence to 
each case subject. After recruiting a total of 2314 subjects 
for the study, Yuan and colleagues visited subjects in their 
homes and interviewed them about their smoking habits, 
both past and present (Table 5-23). What effect does 
smoking cigarettes have on the risk of developing renal 
cell cancer?

†This example is from Mainland D, The risk of fallacious conclusions 
from autopsy data on the incidence of diseases with applications to heart 
disease. Am Heart J.1953;45:644–654.
‡Yuan J-M, et al. Tobacco use in relation to renal cell carcinoma. Cancer 
Epidemiol Biomarkers Prev. 1998;7:429–433.

  TABLE 5-23. Smoking and Renal Cell Cancer

Number of People

Renal Cell  
Cancer

No  
Cancer

Ever smoked cigarettes 800 713
Never smoked cigarettes 357 444

5-12 Yuan and colleagues also collected information from 
subjects who had quit smoking. Based on the data in Table 
5-24. is there any evidence that stopping smoking reduces 
risk of developing renal cell cancer compared to current 
smokers?

*The BALANCE Investigators. Lithium plus valporate combination 
therapy versus monotherapy for relapse prevention in bipolar i disorder 
(BALANCE): a randomized open-label trial. Lancet. 2010;375:385–394.

  TABLE 5-21. Prenatal Dioxin Exposure and Baby 
Gender

Parental Exposure to Dioxin
Female  
Babies

Male  
Babies

Father exposed; mother unexposed 105   81
Father unexposed; mother exposed 100 120

5-10 The chance of contracting disease X is 10%, regardless 
of whether or not a given individual has disease A or disease 
B. Assume that you can diagnose all three diseases with per-
fect accuracy and that in the entire population 1000 people 
have disease A and 1000 have disease B. People with X, A, 
and B have different chances of being hospitalized. Specifi-
cally, 50% of the people with A, 20% of the people with B, 
and 40% of the people with X are hospitalized. Then

•	 Out of the 1000 people with A, 10% (100 people) also 
have X; 50% (50 people) are hospitalized because they 
have A. Of the remaining 50 (who also have X), 40% (20 
people) are hospitalized because of X. Therefore, 70 
people will be hospitalized with both A and X.

•	 Out of the 900 people with A but not X, 50% are hospi-
talized for disease A (450 people).

•	 Out of the 1000 with B, 10% (100 people) also have X; 
20% (20 people) are hospitalized because of B, and of 
the 80 people who are not hopitalized because of B, 40% 
(32 patients) are hospitalized because they have X. Thus, 
52 people with B and X are in the hospital.

•	 Of the 900 with B but not X, 20% (180 people) are hos-
pitalized because they have disease B.

Thus, Table 5-22 summarizes how a hospital-based inves-
tigator will encounter these patients in the hospital. Is 
there a statistically significant difference in the chances 
that an individual has X depending on whether or not he 
has A or B in the sample of patients the hospital-based 
investigator will encounter? Would the investigator reach 
the same conclusion if she could observe the entire popu-
lation? If not, explain why.†
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5-13 Many postmenopausal women are faced with the 
decision of whether they want to take hormone replace-
ment therapy or not. Benefits of hormone replacement 
include decreased risk of cardiovascular disease and 
osteoporosis. However, hormone replacement therapy 
has also been associated with increased risk of breast 
cancer and endometrial cancer. Francine Grodstein and 
colleagues* investigated the relationship between hor-
mone replacement therapy and overall mortality in a 
large group of postmenopausal women. The women 
used in this study were selected from a sample of regis-
tered nurses participating in the Nurses’ Health Study. 
This prospective study has been tracking the health sta-
tus of a large group of registered nurses since 1976, 
updating information every 2 years. Women became eli-
gible for Grodstein’s study when they became meno-
pausal and were included as long as they did not report 
a history of cardiovascular disease or cancer on the orig-
inal 1976 questionnaire. Based on the data in Table 5-25, 
is there any evidence that the risk of death differs in 
women who were identified as currently using hormone 
replacement therapy?

5-14 Based on the data in Table 5-26, is there an increase 
in risk of death in women who reported past hormone 
replacement therapy use compared to women who never 
used it?

  TABLE 5-25. Current Use of Hormone 
Replacement Therapy and Survival

Number of People

Deceased Alive

Currently using hormone 
replacement therapy

  574     8483

Never used hormone 
replacement therapy

2051 17,520

  TABLE 5-24. Former vs. Current Smokers and 
Renal Cell Cancer

Number of People

Renal Cell  
Cancer No Cancer

More than 20 years since  
quitting

169 177

Current smokers 337 262

  TABLE 5-26. Past Use of Human Therapy and 
Survival

Number of People

Deceased Alive

Past use of hormone 
replacement therapy

1012     8621

Never used hormone 
replacement therapy

2051 17,520

*Grodstein F, et al. Postmenopausal hormone therapy and mortality. N 
Engl J Med. 1997;336:1769–1775.
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6What Does “Not 
Significant” Really 
Mean?

As already mentioned in our discussion of the t test, 
the ability to detect a treatment effect with a given level 
of confidence depends on the size of the treatment effect, 
the variability within the population, and the size of the 
samples used in the study. Just as bigger samples make it 
more likely that you will be able to detect an effect, 
smaller sample sizes make it harder. In practical terms, 
this fact means that studies of therapies that involve only 
a few subjects and fail to reject the null hypothesis of no 
treatment effect may arrive at this result because the sta-
tistical procedures lacked the power to detect the effect 
because of a too small sample size, even though the treat-
ment did have an effect. Conversely, considerations of the 
power of a test permit you to compute the sample size 
needed to detect a treatment effect of given size that you 
believe is present.

  AN EFFECTIVE DIURETIC

Now, we make a radical departure from everything that 
has preceded: we assume that the treatment does have 
an effect.

Figure 6-1 shows the same population of people we 
studied in Figure 4-3 except that this time the drug given 
to increase daily urine production works. It increases  
the average urine production for members of this popu-
lation from 1200 to 1400 mL/day. Figure 6-1A shows  
the distribution of daily urine production for all 200 
members of the population in the control (placebo) 
group, and Figure 6-1B shows the distribution of urine 

Thus far, we have used statistical methods to reach con-
clusions by seeing how compatible the observations were 
with the null hypothesis that the treatment had no effect. 
When the data were unlikely to occur if this null hypoth-
esis was true, we rejected it and concluded that the treat-
ment had an effect. We used a test statistic (F, t, z, or χ2) 
to quantify the difference between the actual observa-
tions and those we would expect if the null hypothesis of 
no effect were true. We concluded that the treatment had 
an effect if the value of this test statistic was bigger than 
95% of the values that would occur if the treatment had 
no effect. When this is so, it is common for medical 
investigators to report a statistically significant effect. On 
the other hand, when the test statistic is not big enough 
to reject the hypothesis of no treatment effect, investigators 
often report no statistically significant difference and then 
discuss their results as if they had proven that the treat-
ment had no effect. All they really did was fail to demon-
strate that it did have an effect. The distinction between 
positively demonstrating that a treatment had no effect 
and failing to demonstrate that it did have an effect is 
subtle but very important, especially in the light of the 
small numbers of subjects included in most clinical 
studies.* 

*This problem is particularly encountered in small clinical studies in 
which there are no “failures” in the treatment group. This situation often 
leads to overly optimistic assessments of therapeutic efficacy. See Hanley 
JA, Lippman-Hand A. If nothing goes wrong, is everything all right? In-
terpreting zero numerators. JAMA. 1983;249:1743–1745.
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production for all 200 members of the population in the 
diuretic group.

More precisely, the population of people taking the 
placebo consist of a normally distributed population 
with mean μpla = 1200 mL/day and the population of 
people taking the drug consist of a normally distributed 
population with a mean of µdr = 1400 mL/day. Both pop-
ulations have the same standard deviation, σ = 200 mL/
day.

Of course, an investigator cannot observe all mem-
bers of the population, so he or she selects two groups 
of 10 people at random, gives one group the diuretic 
and the other a placebo, and measures their daily urine 
production. Figure 6-1C shows what the investigator 
would see. The people receiving a placebo produce an 
average of 1180 mL/day, and those receiving the drug 
produce an average of 1400 mL/day. The standard devi-
ations of these two samples are 144 and 245 mL/day, 

respectively. The pooled estimate of the population 
variance is
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2 2 1
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which exceeds 2.101, the value that defines the most 
extreme 5% of possible values of the t test statistic when 
the two samples are drawn from the same population. 
(There are ν = ndr + npla - 2 = 10 + 10 – 2 = 18 degrees of 
freedom.) The investigator would conclude that the 
observations are not consistent with the assumption that 
two samples came from the same population and report 

A

B

C

Daily urine production (mL/day)

Drug

Placebo

Drug

Placebo

FIGURE 6-1. Daily urine production in a 
population of 200 people while they are 
taking a placebo and while they are taking 
an effective diuretic that increases urine 
production by 200 mL/day on the 
average. Panels A and B show the specific 
individuals selected at random for study. 
Panel C shows the results as they would 
appear to the investigator. t = 2.447 for 
these observations. Since the critical 
value of t for P < .05 with 2 (10 - 1) = 18 
degrees of freedom is 2.101, the 
investigator would probably report that  
the diuretic was effective.
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that the drug increased urine production. And he or she 
would be right.

Of course, there is nothing special about the two 
random samples of people selected for the experiment. 
Figure 6-2 shows two more groups of people selected at 
random to test the drug, together with the results as they 
would appear to the investigator. In this case, the mean 
urine production is 1216 mL/day for the people given the 
placebo and 1368 mL/day for the people taking the drug. 
The standard deviations of urine production in the two 
samples are 97 and 263 mL/day, respectively, so the pooled 
estimate of the variance is 1/2 (972 + 2632) = 1982. The 
value of t associated with these observations is

t = −

+
=1368 1216

198 10 198 10
1 71

2 2( / ) ( / )
.

which is less than 2.101. Had the investigator selected 
these two groups of people for testing, he or she would not 

have obtained a value of t large enough to reject the 
hypothesis that the drug had no effect and probably 
reported “no significant difference.” If the investigator 
went on to conclude that the drug had no effect, he or she 
would be wrong.

Notice that this is a different type of error from that 
discussed in Chapters 3 to 5. In the earlier chapters, we 
were concerned with rejecting the hypothesis of no effect 
when it was true. Now we are concerned with not rejecting 
it when it is not true. This situation is called a Type II error 
or b error.

What are the chances of making this second kind of 
error?

Just as we could repeat this experiment more than 1027 
times when the drug had no effect to obtain the distribu-
tion of possible values of t (compare with the discussion 
of Fig. 4-4), we can do the same thing when the drug does 
have an effect. Figure 6-3 shows the results of 200 such 
experiments; 111 out of the resulting values of t fall at or 

A

B

C

Daily urine production (mL/day)

Drug

Placebo

Drug

Placebo

FIGURE 6-2. There is nothing special 
about the two random samples shown in 
Figure 6-1. This illustration shows another 
random sample of two groups of 10 
people each selected at random to test 
the diuretic (A and B) and the results as 
they would appear to the investigator (C). 
The value of t associated with these 
observations is only 1.71, not great 
enough to reject the hypothesis of no drug 
effect with P < 0.05, that is, a = 0.05. If 
the investigator reported the drug had no 
effect, he or she would be wrong.
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above 2.101, the value we used to define a “big” t. Put 
another way, if we wish to keep the P value at or below 5%, 
there is a 111/200 = 56% chance of concluding that the 
diuretic increases urine output when average urine output 
actually increases by 200 mL/day. We say the power of the 
test is .56. The power quantifies the chance of detecting a 
real difference of a given size.

Alternatively, we could concentrate on the 89 of the 
200 experiments that produced t values below 2.101, in 
which case we would fail to reject the hypothesis that 
the treatment had no effect and be wrong. Thus, there 
is an 89/200 = 44% = .44 chance of continuing to 
accept the hypothesis of no effect when the drug really 
increased urine production by 200 mL/day on the 
average.

  TWO TYPES OF ERRORS

Now we have isolated the two different ways the random-
sampling process can lead to erroneous conclusions. These 
two types of errors are analogous to the false-positive and 
false-negative results one obtains from diagnostic tests. 
Before this chapter we concentrated on controlling the 
likelihood of making a false-positive error, that is, con-
cluding that a treatment has an effect when it really does 

not. In keeping with tradition, we have generally sought to 
keep the chances of making such an error below 5%; of 
course, we could arbitrarily select any cutoff value we 
wanted at which to declare the test statistic “big.” Statisti-
cians denote the maximum acceptable risk of this error by 
a, the Greek letter alpha. If we reject the hypothesis of no 
effect whenever P < .05, a = 0.05 or 5%. If we actually 
obtain data that lead us to reject the null hypothesis of no 
effect when the null hypothesis of no effect is true, statisti-
cians say that we have made a Type I error. All this logic is 
relatively straightforward because we have specified how 
much we believe the treatment affects the variable of 
interest, that is, not at all.

What about the other side of the coin, the chance of 
making a false-negative conclusion and not reporting an 
effect when one exists? Statisticians denote the chance of 
erroneously accepting the hypothesis of no effect by b, the 
Greek letter beta. The chance of detecting a true positive, 
that is, reporting a statistically significant difference when 
the treatment really produces an effect, is 1 − b. The power 
of the test that we discussed earlier is equal to 1 − b. For 
example, if a test has power equal to .56, there is a 56% 
chance of actually reporting a statistically significant effect 
when one is really present. Table 6-1 summarizes these 
definitions.

A

B

Value of t

Drug had
no effect

Drug increased urine
production by 200 mL/day

FIGURE 6-3. (A) The distribution of values of the t test statistic computed 
from 200 experiments that consisted of drawing two samples of size 10 each 
from a single population; this is the distribution we would expect if the 
diuretic had no effect on urine production is centered on zero. (compare with 
Fig. 4-4A.) (B) The distribution of t values from 200 experiments in which the 
drug increased average urine production by 200 mL/day. t = 2.1 defines the 
most extreme 5% of the possible values of t when the drug has no effect; 
111 of the 200 values of t we would expect to observe from our data fall 
above this point when the drug increases urine production by 200 mL/day. 
Therefore, there is a 56% chance that we will conclude that the drug actually 
increases urine production from our experiment.
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  TABLE 6-1. Types of Erroneous Conclusions in Statistical Hypothesis Testing

Actual Situation

Conclude From Observations Treatment Has an Effect Treatment Has No Effect

Treatment has an effect

Treatment has no effect

 T rue positive
Correct conclusion 1 − β
 F alse negative
 T ype II error β

 F alse positive
 T ype I error α
 T rue negative
Correct conclusion 1 − α

  WHAT DETERMINES A TEST’S POWER?

So far we have developed procedures for estimating and 
controlling the Type I, or a, error. Now we turn our atten-
tion to keeping the Type II, or b, error as small as possible. 
In other words, we want the power to be as high as possi-
ble. In theory, this problem is not very different from the 
one we already solved with one important exception. 
Since the treatment has an effect, the size of this effect influ-
ences how easy it is to detect. Large effects are easier to 
detect than small ones. To estimate the power of a test, you 
need to specify how small an effect is worth detecting.

Just as with false positives and false negatives in diag-
nostic testing, the Type I and Type II errors are inter-
twined. As you require stronger evidence before reporting 
that a treatment has an effect, that is, make a smaller, you 
also increase the chance of missing a true effect, that is, 
make b bigger or power smaller. The only way to reduce 
both a and b simultaneously is to increase the sample size, 
because with a larger sample you can be more confident 
in your decision, whatever it is.

In other words, the power of a given statistical test 
depends on three interacting factors:

•	 The risk of error you will tolerate when rejecting the hy-
pothesis of no treatment effect.

•	 The size of the difference you wish to detect relative to the 
amount of variability in the populations.

•	 The sample size.

To keep things simple, we will examine each of these 
factors separately.

The Size of the Type I Error a
Figure 6-3 showed the complementary nature of the max-
imum size of the Type I error α and the power of the test. 
The acceptable risk of erroneously rejecting the hypothesis 

of no effect, a, determines the critical value of the test 
statistic above which you will report that the treatment 
had an effect, P < a. (We have usually taken a = 0.05.) This 
critical value is defined from the distribution of the test 
statistic for all possible experiments with a specific sample 
size given that the treatment had no effect. The power is the 
proportion of possible values of the test statistic that fall 
above this cutoff value given that the treatment had a spec-
ified effect (here a 200 mL/day increase in urine produc-
tion). Changing a, or the P value required to reject the 
hypothesis of no difference, moves this cutoff point, 
affecting the power of the test.

Figure 6-4 illustrates this point further. Figure 6-4A 
essentially reproduces Figure 6-3 except that it depicts the 
distribution of t values for all 1027 possible experiments 
involving two groups of 10 people as a continuous distri-
bution. The top part, copied from Figure 4-4D, shows the 
distribution of possible t values (with ν = 10 + 10 – 2 = 18 
degrees of freedom) that would occur if the drug did not 
affect urine production. Suppose we require P < .05 before 
we are willing to assert that the observations were unlikely 
to have arisen from random sampling rather than the 
effect of the drug. According to the table of critical values 
of the t distribution (see Table 4-1), for ν = 18 degrees of 
freedom, 2.101 is the (two-tail) critical value that defines 
the most extreme 5% of possible values of the t test statis-
tic if the null hypothesis of no effect of the diuretic on 
urine production is true. In other words, when we make 
a = 0.05, in which case –2.101 and +2.101 delimit the 
most extreme 5% of all possible t values we would expect 
to observe if the diuretic did not affect urine production.

We know, however, that the drug actually increased 
average urine production by µdr - µpla = 200 mL/day. 
Therefore, the actual distribution of possible values of t 
associated with our experiment will not be given by the 
distribution at the top of Figure 6-4 (which assumes that 
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A

B

Diuretic has no effect

Diuretic has no effect

Value of t

Diuretic increases
average urine
production by

200 mL/day

Diuretic increases
average urine
production by

200 mL/day

+.642

Power = 0.27

Power = 0.56

α = 0.01

Biggest 1% of
t values
shaded

Biggest 5% of
t values
shaded

α = 0.05

–.135

FIGURE 6-4. (A) The top panel shows the distribution of the t test statistic that would occur if the 
null hypothesis was true and the diuretic did not affect urine production. The distribution is centered 
on 0 (because the diuretic has no effect on urine production) and, from Table 4-1, t = +2.101 (and 
-2.101) define the (two-tail) 5% most extreme values of the t test statistic that would be expected 
to occur by chance if the drug had no effect. The second panel shows the actual distribution of the  
t test statistic that occurs when the diuretic increases urine output by 200 mL/day; the distribution 
of t values is shifted to the right, so the distribution is now centered on 2.236. The critical value of 
2.101 is -.135 below 2.236, the center of this shifted distribution. From Table 6-2, .56 of the 
possible t values fall in the one-tail above −.135, so we conclude that the power of a t test to detect 
a 200 mL/day increase in urine production is 56%. (The power also includes the portion of the t 
distribution in the lower tail below −2.101, but because this area is so small we will ignore it.)  
(B) If we require more evidence before rejecting the null hypothesis of no difference by reducing 
a to 0.01, the critical value of t that must be exceeded to reject the null hypothesis increases to 
2.878 (and −2.878). Since the effect of the diuretic is unchanged, the actual distribution of t 
remains centered on 2.236; the critical value of 2.878 is .642 above 2.236, the center of the 
actual t distribution. From Table 6-2, .27 of the possible t values fall in the tail above .642, so the 
power of the test drops to 27%.
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the null hypothesis that µdr - µpla = 0 is true and so is 
centered on 0).

To determine where the actual distribution of values of 
the t test statistic will be centered, recall from Chapter 4 
that the t test statistic to compare two means, is

t
X X

s n s n

dr pla= −

+( / ) ( / )2 2
dr pla

X Xdr pla-  
computed from the observations is an esti-

mate of the actual difference in mean urine production 
between the populations of people taking the drug and 
taking the placebo, µdr - µpla = 200 mL/day. The observed 
standard deviation, s, is an estimate of the standard devia-
tion of the underlying populations, σ, which, from 
Figure 6-1, is 200 mL/day. Therefore, we would expect the 
actual distribution of the t test statistic to be centered on

′ =
−

+
t

n n

µ µ

σ σ
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ndr and npla both are 10, so the actual distribution of the 
t test statistic will be centered on
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The lower distribution in Figure 6-4A shows this actual 
distribution of possible t values associated with our exper-
iment: the t distribution is moved to the right to be cen-
tered on 2.236 (rather than 0, as it was under the null 
hypothesis). Fifty-six percent of these possible values of t, 
that is, 56% of the area under the curve, fall above the 
2.101 cutoff, so we say the power of the test is .56.

In other words, if the drug increases average urine pro-
duction by 200 mL/day in this population and we do an 
experiment using two samples of 10 people each to test 
the drug, there is a 56% chance that we will conclude that 
the drug is effective (P < .05). To understand how we 
obtain this estimate of the power, we need to consult 
another table of critical values of the t distribution, one 
that gives the one-tail probability of being in the upper tail 
of the distribution as a function of the value of t 
(Table 6-2). The information in this table is essentially the 
same as in Table 4-1, with the difference that it presents 
critical values for one tail only, so the P values associated 
with each value of t in this table are half the corresponding 

values in Table 4-2. For example, the critical value of  
t = +2.101, the two-tail critical value associated with P = 
.05 for ν = 18 degrees of freedom in Table 4-2, corresponds 
to a one (upper) tail probability of .025 in Table 6-2. This 
situation arises because in a two-tail test of the null 
hypothesis of no difference, half the risk of a false-positive 
conclusion resides in the upper tail of the distribution of 
possible values of t and the other half resides in the lower 
end of the distribution, below −2.101 in this case. Note, 
from Table 6-2, that the probability of being in the lower 
tail of the distribution of possible values of t (with ν = 18) 
at or below -2.101 is .025. The .025 probability of being at 
or below -2.101 plus the .025 probability of being at or 
above +2.101 add up to the .05 two-tailed probability we 
found in Table 4-1.

As noted above, the actual distribution of values of the 
t test statistic given that there is actually a 200 mL/day 
increase in urine production with the diuretic is centered 
on 2.236 rather than 0, as it would be if the null hypoth-
esis was true. The critical value of 2.101 that leads us to 
reject the null hypothesis (from the top distribution in 
Fig. 6-4A) is below the center of the actual distribution of 
the t test statistic by 2.101 – 2.236 = –.135. We can use 
Table 6-2 to determine the probability of being in the 
upper tail of this t distribution* (with ν = 18 degrees of 
freedom) is .56 (between .60, which corresponds to –.257 
and .50, which corresponds to .000), yielding the power 
of 56%.

Conversely, we can say that b, the probability that we will 
make a false negative, or Type II, error and accept the null 
hypothesis of no effect when it is not true is 1 – .56 = .44 = 
44%. Alternatively, we can use Table 6-2 to note that the 
probability of being in the lower tail of the t distribution (at 
or below –.135) is .44.

Now look at Figure 6-4B. The two distributions of t val-
ues are identical to those in Figure 6-4A. (After all, the 
drug’s true effect is still the same.) This time, however, we 
will insist on stronger evidence before concluding that the 
drug actually increases urine production. We will require 
that the test statistic fall in the most extreme 1% of possible 
values before concluding that the data are inconsistent 
with the null hypothesis that the drug has no effect. Thus, 
a = 0.01 and t must be below −2.878 or above +2.878 to fall 

*Technically, we should also consider the portion of the actual t distribu-
tion in the lower tail of Figure 6-4A below –2.101, but this portion is 
extremely small so we will ignore it.
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  TABLE 6-2. Critical Values of t (One-Tailed)

t 0

Probability of Larger Value (Upper Tail)

.995 .99 .98 .975 .95 .90 .85 .80 .70 .60

Probability of Smaller Value (Lower Tail)

n .005 .01 .02 .025 .05 .10 .15 .20 .30 .40

2 −9.925 −6.965 −4.849 −4.303 −2.920 −1.886 −1.386 −1.061 −0.617 −0.289
4 −4.604 −3.747 −2.999 −2.776 −2.132 −1.533 −1.190 −0.941 −0.569 −0.271
6 −3.707 −3.143 −2.612 −2.447 −1.943 −1.440 −1.134 −0.906 −0.553 −0.265
8 −3.355 −2.896 −2.449 −2.306 −1.860 −1.397 −1.108 −0.889 −0.546 −0.262

10 −3.169 −2.764 −2.359 −2.228 −1.812 −1.372 −1.093 −0.879 −0.542 −0.260
12 −3.055 −2.681 −2.303 −2.179 −1.782 −1.356 −1.083 −0.873 −0.539 −0.259
14 −2.977 −2.624 −2.264 −2.145 −1.761 −1.345 −1.076 −0.868 −0.537 −0.258
16 −2.921 −2.583 −2.235 −2.120 −1.746 −1.337 −1.071 −0.865 −0.535 −0.258
18 −2.878 −2.552 −2.214 −2.101 −1.734 −1.330 −1.067 −0.862 −0.534 −0.257
20 −2.845 −2.528 −2.197 −2.086 −1.725 −1.325 −1.064 −0.860 −0.533 −0.257
25 −2.787 −2.485 −2.167 −2.060 −1.708 −1.316 −1.058 −0.856 −0.531 −0.256
30 −2.750 −2.457 −2.147 −2.042 −1.697 −1.310 −1.055 −0.854 −0.530 −0.256
35 −2.724 −2.438 −2.133 −2.030 −1.690 −1.306 −1.052 −0.852 −0.529 −0.255
40 −2.704 −2.423 −2.123 −2.021 −1.684 −1.303 −1.050 −0.851 −0.529 −0.255
60 −2.660 −2.390 −2.099 −2.000 −1.671 −1.296 −1.045 −0.848 −0.527 −0.254

120 −2.617 −2.358 −2.076 −1.980 −1.658 −1.289 −1.041 −0.845 −0.526 −0.254
∞ −2.576 −2.326 −2.054 −1.960 −1.645 −1.282 −1.036 −0.842 −0.524 −0.253

Normal −2.576 −2.326 −2.054 −1.960 −1.645 −1.282 −1.036 −0.842 −0.524 −0.253

in the most extreme 1% of values. The top part of Figure 
6-1B shows this cutoff point. The actual distribution of the 
t test statistic is still centered on 2.236, so the 2.878 critical 
value is now above the center of this distribution by 2.878 
− 2.236 = .642. From Table 6-2, we find that only .27 or 
27% of the actual distribution of t falls above 2.878 in Fig-
ure 6-4B, so the power of the test has fallen to .27. In other 
words, there is less than an even chance that we will report 
that the drug is effective even though it actually is.

By requiring stronger evidence that there be a treatment 
effect before reporting it we have decreased the chances of 
erroneously reporting an effect (a Type I error), but we have 
increased the chances of failing to detect a difference when 
one actually exists (a Type II error) because we decreased 
the power of the test. This trade-off always exists.

The Size of the Treatment Effect
We just demonstrated that the power of a test decreases as we 
reduce the acceptable risk of making a Type I error, a. The 
entire discussion was based on the fact that the drug increased 
average urine production by 200 mL/day, from 1200 to 1400 
mL/day. Had this change been different, the actual distribu-
tion of t values connected with the experiment also would 
have been different. In other words, the power of a test 
depends on the size of the difference to be detected.

Let us consider three specific examples. Figure 6-5A 
shows the t distribution (the distribution of possible values 
of the t statistic) for a sample size of 10 if the diuretic had 
no effect and the two treatment groups could be considered 
two random samples drawn from the same population. The 
most extreme 5% of the values are shaded, just as in Figure 
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6-4. Figure 6-5B shows the distribution of t values we would 
expect if the drug increased urine production an average of 
200 mL/day over the placebo; 56% of the possible values are 
beyond −2.101 or + 2.101, so the power of the test is .56. (So 
far we are just recapitulating the results in Fig. 6-4). Now, 
suppose that the drug only increased urine production by 
100 mL/day. In this case, as Figure 6-5C shows, the actual 
distribution of the t test statistic will no longer be centered 
on 0, but on

′
+

t == ==100

200 10 200 10
1 118

2 2( / ) ( / )
.

Thus, we need to determine the fraction of the actual 
possible values of the t distribution that fall above 2.101 
- 1.118 = .983. The sample size is the same as before 

(n = 10 in each group), so there are still ν = 10 + 10 − 2 = 
18 degrees of freedom. From Table 6-2 we find that .17 of 
the possible values fall above .983, so the power of the test 
to detect a 100 mL/day change in urine production is only 
.17 (or 17%). In other words, there is less than a 1 in 5 
chance that doing a study of two groups of 10 people 
would detect a change in urine production of 100 mL/day 
if we required that P < .05 before reporting an effect.

Finally, Figure 6-5D shows the distribution of t values 
that would occur if the drug increased urine production by 
an average of 400 mL/day. Because of this larger effect, the 
actual distribution of the t test statistic will be centered on

′
+

t == ==400

200 10 200 10
4 472

2 2( / ) ( / )
.

Probability of Larger Value (Upper Tail)

.50 .40 .30 .20 .15 .10 .05 .025 .02 .01 .005

Probability of Smaller Value (Lower Tail)

.50 .60 .70 .80 .85 .90 .95 .975 .98 .99 .995

0 0.289 0.617 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925
0 0.271 0.569 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604
0 0.265 0.553 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707
0 0.262 0.546 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355
0 0.260 0.542 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169
0 0.259 0.539 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055
0 0.258 0.537 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977
0 0.258 0.535 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921
0 0.257 0.534 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878
0 0.257 0.533 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845
0 0.256 0.531 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787
0 0.256 0.530 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750
0 0.255 0.529 0.852 1.052 1.306 1.690 2.030 2.133 2.438 2.724
0 0.255 0.529 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704
0 0.254 0.527 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660
0 0.254 0.526 0.845 1.041 1.289 1.658 1.980 2.076 2.358 2.617
0 0.253 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576
0 0.253 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576

  TABLE 6-2. Critical Values of t (One-Tailed) (Continued )
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FIGURE 6-5. The larger the size of the 
treatment effect, the further the actual 
distribution of the t test statistic will shift 
away from zero; the more of the actual 
distribution of t values will exceed the 
critical value of 2.101 that determines the 
most extreme (two-tail) 5% of the values 
of t that will occur if the null hypothesis of 
no effect is true. As a result, the greater 
the effect of the diuretic, the greater the 
power to detect the fact that the diuretic 
increases urine production.

The power of the test to detect this difference will be the 
fraction of the t distribution larger than 2.101 − 4.472 = 
−2.371. From Table 6-2, with ν = 18 degrees of freedom, 
.985 of all possible t values fall above 2.371, so the power 
of the test is 99%. The chance is quite good that our exper-
iment will lead to the conclusion that the diuretic affects 
urine production (with P < .05).

Figure 6-5 illustrates the general rule: It is easier to 
detect big differences than small ones.

We could repeat this process for all possible sizes of 
the treatment effect, from no effect at all up to very large 
effects, then plot the power of the test as it varies with 
the change in urine production actually produced by the 
drug. Figure 6-6 shows a plot of the results, called a 
power function, of the test. It quantifies how much easier 

it is to detect a change (when we require a value of t cor-
responding to P < .05 and two samples of 10 people 
each) in urine production as the actual drug effect gets 
larger and larger. This plot shows that if the drug 
increases urine production by 200 mL/day, there is a 
55% chance that we will detect this change with the 
experiment designed as we have it; if urine production 
increases by 350 mL/day, the chance of our detecting this 
effect improves to 95%.

The Population Variability
The power of a test increases as the size of the treatment 
effect increases, but the variability in the population under 
study also affects the likelihood with which we can detect 
a treatment effect of a given size.
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Recall that the actual distribution of the t test statistic 
is centered on
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in which µdr − µpla is the actual size of the treatment effect, 
σ is the standard deviation of the two (different) underly-
ing populations, and ndr and npla are the sizes of the two 
samples. In the interest of simplicity, we assume that the 
two samples are the same size; that is ndr = npla = n. Denote 
the change in the population mean due to the treatment 
with the Greek letter delta, δ ; then µdr − µpla = δ , and the 
center of the actual t distribution will be
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Therefore, t 9, how far from 0 the center of the actual 
distribution of the t test statistic moves, depends on the 
change in the mean response (δ) normalized by the popu-
lation standard deviation (s).

For example, the standard deviation in urine production 
in the population we are studying is 200 mL/day (from 
Fig. 6-1). In this context, an increase in urine production of 
200 or 400 mL/day can be seen to be 1 or 2 standard devia-
tions, a fairly substantial change. These same absolute 
changes in urine production would be even more striking if 
the population standard deviation were only 50 mL/day, in 
which case a 200 mL/day absolute change would be 4 stan-
dard deviations. On the other hand, these changes in urine 
production would be hard to detect — indeed one wonders 
if you would want to detect them — if the population stan-
dard deviation were 500 mL/day. In this case, 200 mL/day 
would be only 0.4 standard deviation of the population.

Increase in average daily urine production (mL/day)

n = 10 for placebo and drug samples
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FIGURE 6-6. The power of a t test to detect a 
change in urine production based on 
experiments with two groups of people, each 
containing 10 individuals. The dashed line 
indicates how to read the graph. A t test has 
a power of .56 for detecting a 200 mL/day 
change in urine production.
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As the variability in the population s decreases, the 
power of the test to detect a fixed absolute treatment effect 
size δ increases and vice versa. In fact, we can combine the 
influence of these two factors by considering the dimen-
sionless ratio f = δ /σ, known as the noncentrality param-
eter, rather than each one separately.

Bigger Samples Mean More Powerful Tests
So far we have seen two things: (1) The power of a test to 
correctly reject the hypothesis that a treatment has no effect 
decreases as the confidence with which you wish to reject 
that hypothesis increases; (2) the power increases as the 
size of the treatment effect, measured with respect to the 
population standard deviation, increases. In most cases, 
investigators cannot control either of these factors and for 
a given sample size are stuck with whatever the power of 
the test is. However, the situation is not totally beyond 
their control. They can increase the power of the test with-
out sacrificing the confidence with which they reject the 
hypothesis of no treatment effect (a) by increasing the 
sample size.

Increasing the sample size generally increases the 
power for two reasons. First, as the sample size grows the 
number of degrees of freedom increases, and the value of 
the test statistic that defines the “biggest” 100a percent of 
possible values under the assumption of no treatment 
effect decreases. Second, as the equation for t ′ above 
shows, the value of t (and many other test statistics) 
increases as sample size n increases. As a result, the distri-
bution of t values that occur when the treatment has an 
effect of a given size δ /σ is located at higher t values as 
sample size increases.

For example, Figure 6-7A shows the same information 
as Figure 6-4A, with the sample size equal to 10 in each of  
the two groups. Figure 6-7B shows the distribution of pos-
sible t values if the hypothesis of no effect were true as well 
as the distribution of t values that would appear if the 
drug still increased urine production by 200 mL/day but 
now based on an experiment with 20 people in each 
group. Even though the size of the treatment effect (δ = 
200 mL/day) and the standard deviations of the underly-
ing populations (σ = 200 mL/day) are the same as before, 
the actual distribution of the t test statistic moves further 
to the right to
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200 20 200 20
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.

because the sample size of each group increased from n = 
10 to n = 20.

In addition, because there are now 20 people in each 
group, the experiment has ν = 2 (20 − 1) = 38 degrees of 
freedom. From Table 4-1, the critical value of t defining the 
most extreme (two-tail) 5% of possible t values under 
the null hypothesis of no effect falls to 2.024. To obtain the 
power of this test to reject the null hypothesis, we find the 
proportion of the t distribution at or above 2.024 − 3.162 = 
-1.138 with ν = 38 degrees of freedom. From Table 6-2, we 
find that the power of this study to detect an effect has 
increased to .86, up substantially from the value of .56 asso-
ciated with a sample size of 10 in each treatment group.

We could repeat this analysis over and over again to 
compute the power of this test to detect a 200 mL/day 
increase in urine production for a variety of sample sizes. 
Figure 6-8 shows the results of such computations. As the 
sample size increases, so does the test’s power. In fact, esti-
mating the sample size required to detect an effect large 
enough to be clinically significant is probably the major 
practical use to which power computations are put. Such 
computations are especially important in planning ran-
domized clinical trials to estimate how many patients will 
have to be recruited and how many centers will have to be 
involved to accumulate enough patients to obtain a large 
enough sample to complete a meaningful analysis.

What Determines Power? A Summary
Figure 6-9 shows a general power curve for the t test, allow-
ing for a variety of sample sizes and differences of interest. 
All these curves assume that we will reject the null hypoth-
esis of no treatment effect whenever we compute a value of 
t from the data that corresponds to P < .05 (a = 0.05). If we 
were more or less stringent in our requirement concerning 
the size of t necessary to report a difference, we would 
obtain a family of curves different from those in Figure 6-9.

There is one curve for each value of the sample size n 
in Figure 6-9. This value of n represents the size of each of 
the two sample groups being compared with the t test. 
Most power charts (and tables) present the results assum-
ing that each of the experimental groups is the same size 
because, for a given total sample size, power is greatest 
when there are equal numbers of subjects in each treat-
ment group. Thus, when using power analysis to estimate 
the sample size for an experiment, the result actually 
yields the size of each of the sample groups. Power analysis 
also can be used to estimate the power of a test that yielded 
a negative finding; in the case of unequal sample sizes, use 
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FIGURE 6-7. As the sample size 
increases from 10 per group (A) to 20 
per group (B), the power of the test 
increases for two reasons: (1) the critical 
value of t for a given confidence level in 
concluding that the treatment had an 
effect decreases, and (2) the values of 
the t statistic associated with the 
experiment increase.

the size of the smaller sample in the power analysis with 
the charts in this book.* This procedure will give you a 
conservative (low) estimate for the power of the test.

To illustrate the use of Figure 6-9, again consider the 
effects of diuretic presented in Figure 6-1. We wish to 
compute the power of a t test (with a 5% risk of a Type I 
error, a = 0.05) to detect a mean change in urine produc-
tion of 200 mL/day when the population has a standard 
deviation of 200 mL/day. Hence

φ δ
σ

= = =200
1

mL/day

200 mL/day

*There are computer programs that yield exact power calculations when 
sample sizes are not equal.

Since the sample size is n = 10 (in both the placebo and 
drug groups), we use the “n = 10” line in Figure 6-9 to find 
that this test will have a power of .56.

All the examples in this chapter so far deal with esti-
mating the power of an experiment that is analyzed with 
a t test. It is also possible to compute the power for all the 
other statistical procedures described in this book. 
Although the details of the computations are different, the 
same variables are important and play the same general 
roles in the computation.

Muscle Strength in People with Chronic 
Obstructive Pulmonary Disease
The stair climb power test is a functional test used 
among older people to measure leg muscle power.  
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FIGURE 6-8. The effect of sample size on 
the power of a t test to detect a 200 mL/
day increase in urine production with a = 
0.05 and a population standard deviation in 
urine production of 200 mL/day. The 
dashed line illustrates how to read the 
graph. A sample size of 10 yields a power of 
.56 for a t test to detect a 200 mL/day 
change in urine production.

To assess whether this test could be used to assess leg 
muscle power in people with chronic obstructive pul-
monary disease (COPD) Marc Roig and colleagues* 
measured the power delivered by people with mild-to-
severe COPD with age and sex matched controls with-
out disease but lived sedentary lifestyles. Subjects were 
told to climb 10 stairs as quickly as they could and the 
power computed as the vertical velocity (the gain in 
height of the 10 stairs divided by the length of time it 
took the subject to climb the stairs) times the subject’s 
weight. Based on historical data, Roig and colleagues 

*Roig M, Eng JJ, MacIntyre DL, Road JD, Reid WD. Associations of the 
stair climb power test with muscle strength and functional performance 
in people with chronic obstructive pulmonary disease: a cross-sectional 
study. Phys Ther. 2010;90:1774–1782.

expected the normal control people to deliver about 375 
W with a standard deviation of about 125 W. 

How large a sample size would be necessary to have an 
80% power to detect a 100 W change in the power deliv-
ered by the people with COPD using conventional statisti-
cal significance (α = .05)?

The desired effect size, δ, is 100 W and the estimated 
standard deviation, σ, is 125 W, so the noncentrality 
parameter is

φ δ
σ

= = =100
80

125
.

From Figure 6-9, the sample size to obtain a power of 
0.8 is n = 26 for each sample.

Of course, we could also compute the power of a study 
with a given sample size to detect a specified effect. 
Box 6-1 illustrates such a calculation.
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φ = δ/σ

FIGURE 6-9. The power function for a t test for 
comparing two experimental groups, each of 
size n, with a = 0.05. d is the size of the 
change we wish to detect and σ is the 
population standard deviation. If we had taken 
a = 0.01 or any other value, we would have 
obtained a different set of curves. The dashed 
line indicates how to read the power of a test 
to detect a s = 200 mL/day change in urine 
production with a d = 200 mL/day standard 
deviation in the underlying population with a 
sample size of n = 10 in each test group; the 
power of this test is .56. The dotted line 
indicates how to find the power of an 
experiment designed to study the effects of 
anesthesia on the cardiovascular system in 
which f = d /s =.55 with a sample size of 9; 
the power of this test is only .19.

If Roig and colleagues included 20 people in each of 
the control and COPD groups, what would be the power 
of the study to detect a 25% change stair climbing 
power assuming conventional statistical significance  
(α = .05)?
	 Because normal people have an average stair 
climbing power of 375 W with, a 25% change in pain 
score would be an effect size, δ, of .25 × 375 = 94 W. 
The estimated standard deviation, σ, is 125 W, so the 
noncentrality parameter is

φ δ
σ

= = =94
125

75.

	F rom Figure 6-9, with a sample size of n = 20 in 
each group, the power to detect this effect is .64.

Box 6-1 • Power to Detect a Change in Stair 
Climbing Performance Given the Sample Size We summarize our discussion of the power of hypothesis-

testing procedures with these five statements:

•	 The power of a test tells the likelihood that the hypothesis 
of no treatment effect will be rejected when the treatment 
has an effect.

•	 The more stringent our requirement for reporting that the 
treatment produced an effect (i.e., the smaller the chances 
of erroneously reporting that the treatment was effective), 
the lower the power of the test.

•	 The smaller the size of the treatment effect (with respect to 
the population standard deviation), the harder it is to  
detect.

•	 The larger the sample size, the greater the power of the 
test.

•	 The exact procedure to compute the power of a test de-
pends on the test itself.
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  �POWER AND SAMPLE SIZE FOR 
ANALYSIS OF VARIANCE*

The issues underlying power and sample size calculations in 
analysis of variance are no different than for the t test. The 
only difference is the way in which the size of the minimum 
detectable treatment effect is quantified and the mathemati-
cal relationship relating this magnitude and the risk of erro-
neously concluding a treatment effect. The measure of the 
treatment effect to be detected is more complicated than in a 
t test because it must be expressed as more than a simple dif-
ference of two groups (because there are generally more than 
two groups in an analysis of variance). The size of the treat-
ment effect is again quantified by the noncentrality parameter, 
f, although it is defined differently than for a t test. To esti-
mate the power of an analysis of variance, you specify the 
number of treatment groups, sample size, risk of a false pos-
itive (a) you are willing to accept, and size of the treatment 
effect you wish to detect (f), then look the power up in charts 
for analysis of variance, just as we used Figure 6-9 for t tests.

The first step is to define the size of the treatment effect 
with the noncentrality parameter. We specify the mini-
mum difference between any two treatment groups we 
wish to detect, δ, just as when computing the power of the 
t test. In this case, we define

φ δ
σ

= n

k2

where s is the standard deviation within the underlying 
population, k is the number of treatment groups, and n is 
the sample size of each treatment group.† (Note the 

similarity with the definition of f = δ /s for the t test.) 
Once f is determined, obtain the power by looking in a 
power chart such as Figure 6-10 with the appropriate 
number of numerator degrees of freedom, νn = k - 1 and 
denominator degrees of freedom νd = k (n - 1). (A more 
complete set of power charts for analysis of variance 
appears in Appendix B.)

These same charts can be used to estimate the sample 
size necessary to detect a given effect with a specified power. 
The situation is a little more complicated than it was in the 
t test because the sample size, n, appears in the noncentral-
ity parameter, f, and the denominator degrees of freedom, 
νd . As a result, you must apply successive guesses to find n. 
You first guess n, compute the power, then adjust the guess 
until the computed power is close to the desired value. The 
example below illustrates this process.

Power and Sperm Motility
Suppose in the experimental study of rabbit sperm motil-
ity with three (k = 3) experimental conditions – ordinary 
control, stress control and cell phone exposure – we also 
wanted to measure the effect of cell phone exposure on 
sperm count. Normal sperm count in a rabbit is about 
350 million sperm/mL with a standard deviation of about 
20 million sperm/mL. What would be the power of the 
study with n = 8 rabbits per group we analyzed earlier 
(Box 3-1) to detect a change of 50 million sperm/mL at 
conventional statistical significance (α = .05)?

Using this information, the noncentrality parameter is

φ δ
σ

= = =n

k2

50

20

8

2 3
2 88

⋅
.

There are νn = k - 1 = 3 - 1 = 2 numerator and νd = k 
(n - 1) = 3 (8 - 1) = 21 denominator degrees of freedom. 
From the power chart in Figure 6-10, the power to detect 
a change of 50 million sperm/mL is .99, so we can be very 
confident of detecting this change.

This is an exceptionally high power. Given the cost of 
doing the experiments and a desire to minimize the num-
ber of animals used in the experiments, suppose that we 
would be happy with .80 power. We estimate the sample size 
using the same noncentrality parameter and power chart, 
but, because the sample size, n, appears both in the noncen-
trality parameter and the denominator degrees of freedom, 
νd, which, in turn, determines which line in Figure  6-10 we 
use, we need to solve for n iteratively. Box 6-2 shows that 
this process yields a sample size of 5 per group.

*In an introductory course, this section can be skipped without interfer-
ing with the remaining material in the book.
†We present the analysis for equal sample sizes in all treatment groups 
and the case where all the means but one are equal and the other differs 
by δ. This arrangement produces the maximum power for a given total 
sample size. An alternative definition of φ involves specifying the means 
for the different treatment groups that you expect to detect, µ, for each 
of the k groups. In this case,

φ
µ µ
σ

==
n

k
i∑ −( )2

2

where

µ
µ

=
∑ i

k

is the grand population mean. The definition of f in terms of the mini-
mum detectable difference is generally easier to use because it requires 
fewer assumptions.
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FIGURE 6-10. The power function for 
analysis of variance for nn = 2 and a = 
0.05. Appendix B contains a complete set 
of power charts for a variety of values of 
νn and a = 0.05 and .01. (Source: 
Adapted from Pearson ES, Hartley HO. 
Charts for the power function for analysis 
of variance tests, derived from the non-
central f distribution. Biometrika 
1951;38:112–130.)

There are three (k = 3) experimental conditions and we want to be able to detect a difference of δ = 50 million 
sperm/mL with a standard deviation of σ = 20 million sperm/mL with α = .05? We know that n = 8 rabbits per 
group gives more power than we need, so try n = 4. In this case the noncentrality parameter would be

φ δ
σ

= = =⋅
n
k2

50
20

4
2 3

2 04.

	T here are nn = k – 1 = 3 – 1 = 2 numerator and nd = k (n – 1) = 3 (4 – 1) = 9 denominator degrees of freedom. 
From the power chart in Figure 6-10, the power to detect a change of 50 million sperm/mL is .76, which is a little 
below our target of .80. Since it is close, try n = 5, so

φ δ
σ

= = =⋅
n
k2

50
20

5
2 3

2 28.

	T here are still nn = k – 1 = 3 – 1 = 2 numerator degrees of freedom, but now there are nd = k (n – 1) = 3 (5 – 1) = 12 
denominator degrees of freedom. From Figure 6-10, the power is .89, so we can do this experiment with n = 5 rabbits 
in each group and achieve the desired power.

Box 6-2 • Sample Size to Detect a Change of 50 million sperm/mL in Rabbit Study
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p2 – p1
sp2

 – p1
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z1 – β(upper)

Value of z

FIGURE 6-11. (A) za  (2) is the two-tail critical value of the z test statistic that 
defines the a percent most extreme values of the z test statistic that we would 
expect to observe in an experiment comparing two proportions if the null 
hypothesis of no differences in the underlying populations was true. (B) If 
there is a difference in the proportions with the characteristic of interest in the 
two populations, the distribution of possible values of the z test statistic will 
no longer be centered on 0, but rather a value that depends on how big the 
actual differences in proportions between the two populations, | p1 − p2 |, is. 
The fraction of this actual distribution of the z test statistic that fall above za (2) 
approximates the power of the test. (compare with Fig. 6-4.)

  �POWER AND SAMPLE SIZE FOR 
COMPARING TWO PROPORTIONS*

The development of formulas for power and sample size 
when comparing two proportions is similar to the proce-
dure that we used for the t test, except that we will be bas-
ing the computations on the normal distribution. We wish 
to find the power of a z test to detect a difference between 
two proportions, p1 and p2 with sample sizes n1 and n2. 
Recall, from Chapter 5, that the z test statistic used to 
compare two observed proportions, is

z
p p

sp p

=
−

−

ˆ ˆ
2 1

2 1

Under the null hypothesis of no difference, this test 
statistic follows the standard normal distribution 
(with mean 0 and standard deviation 1) given in the 

*If time is limited this material can be skipped without loss of conti-
nuity.

last row of Table 6-2. We denote the two-tailed critical 
value of z that we require to reject the null hypothesis 
of no difference with Type I error a, za (2). For example, 
if we follow the convention of accepting a 5% risk of a 
false positive (i.e., reject the null hypothesis of no dif-
ference when P < .05), from Table 4-1, za (2) = 1.960 
(Fig. 6-11A).

If there is actually a difference in the two proportions, 
p1 and p2, then the actual distribution of the z test statistic 
will be centered on

′ =
−

−

z
p p

sp p

 
2 1

2 1

where

s
p p

n

p p

np p2 1

2 2

2

1 1

1

1 1
− =

−
+

−( ) ( )

As we did with the t test, we determine the power to 
detect the difference p2 − p1 as the proportion of the actual 
distribution of the z test statistic (Fig. 6-11B) that falls 
above za (2). Hence, the power of the test to detect the 
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specified difference could be estimated as the proportion 
of the normal distribution above

z z z z
p p

sp p
1 2 2

2 1

2 1

−
−

− ′ −
−

β α α( ) ( ) ( )upper == ==
 

where z1 − b (upper) is the value of z that defines the upper 
(1 - b) percentage of the normal distribution (from 
Table 6-2).*

The estimate of power obtained by matching the two 
distributions in Figure 6-11 based on z values can be 
improved by adjusting the matching criterion because in 
real units that standard deviations of the normal distribu-
tion under the null hypothesis (analogous to the top panel 
in Fig. 6-11) and the alternative hypothesis (the bottom 
panel) are slightly different. We obtain a more accurate esti-
mate of the power by adjusting for this fact, which yields

z
s

s
z

p p

s
p

p p p p
1 2

2 1

2 1 2 1

1 9

−
− −

= −
−

=

β α( ) ( )

.

upper

 

660
97 87

0451
257−

−
= −

 . .

.
.

where p is the weighted average of the two anticipated 
probabilities

p
n p n p

n n
=

+
+

2 2 1 1

2 1

and s
p

is the associated standard deviation

s
p p

n

p p

np
= − + −( ) ( )1 1

2 1

Power and Polyethylene Bags
When we evaluated the effect on mortality of keeping 
extremely low birth weight infants warm by wrapping them 
in polyethylene bags compared to traditional methods 

*Technically, we should also include the part of the distribution in Fig-
ure 6-11A that falls below the lower zα(2)tail of the distribution in 
Figure 6-11B, but this tail of the distribution rarely contributes anything 
of consequence. Note that these calculations do not include the Yates 
correction. It is possible to include the Yates correction by replacing (p2 
- p1) with (p2 - p1 - ½) (1/n2 + 1/(n1). Doing so makes the arithmetic 
more difficult, but does not represent a theoretical change. Including the 
Yates correction lowers the power or increases the sample size.

(Table 5-3) we did not reject the null hypothesis of no 
effect. To get a sense of how confident we can be in drawing 
a negative conclusion from these data (and accept the null 
hypothesis of no effect), we will compute the power of this 
study to detect a 10% difference in survival.

In Chapter 5, we analyzed these data using χ2, but 
because this is a 2 × 2 contingency table, we could also do 
the same analysis as a comparison of two proportions. 
Sixty-one of 70 infants who were warmed using traditional 
methods, 61/70 = 87% survived. Therefore, we will set the 
initial proportion, p1, to .87 and final proportion, p2, to .87 
+ .10 = .97. The sample size, n, of both groups is 70. We will 
use conventional statistical significance of α = .05.

We begin by using the target proportions to compute

p
n p n p

n n

s
p

p

=
+
+

= +
+

=

=

⋅ ⋅2 2 1 1

2 1

70 97 70 87

70 70
92

. .
.

(( ) ( )

. ( . ) . ( . )

1 1

92 1 92

70

92 1 92

70

2 1

− + −

= − + −

p

n

p p

n

== .0459

and

s
p p

n

p p

np p2 1

2 2

2

2 2

2

1 1

97 1 97

70

− =
−

+
−

= − +

( ) ( )

. ( . ) .887 1 87

70
0451

( . )
.

− =

The two-tail 95% critical value of the normal distribu-
tion, zα(2), is, from Table 6-2, 1.960 so the power of the test 
is the fraction of the normal distribution above

z
s

s
z

p p

s
p

p p p p
1 2

2 1

2 1 2 1

0459

−
− −

= −
−

=

β α( ( )

.

upper)

..
.

. .

.
.

0451
1 960

97 87

0451
223⋅ − − = −

From Table 6-2, the power of the test is 59%, which 
means that we can be reasonably confident in accepting 
the null hypothesis and concluding that there was no sur-
vival benefit from using the polyethylene bags to keep the 
infants warm.

Box 6-3 shows that this study had a 16% power to 
detect a 5% survival benefit, so if you did not think chang-
ing the technology for keeping extremely low birth weight 



120 Chap t e r  6

We use the proportion of infants who survived using traditional methods as the initial proportion so set p1 = .87 
and the final proportion 5% higher, so p2 = .87 + .05 = .92. The sample size, n, of both groups is 70. 
	 We begin by using the target proportions to compute

p
n p n p

n n
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+
+

= +
+
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2 1
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n
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np

p= − + − = − + −( ) ( ) . ( . ) . (1 1 895 1 895
70

895 1

2 1

.. )
.

895
70

0518=

and

s
p p

n

p p

np p2 1

2 2

2

2 2

2

1 1 92 1 92
70− =

−
+

−
= − +

( ) ( ) . ( . ) .887 1 87
70

0516
( . )

.
− =

	 We will use conventional statistical significance of α = .05, so we use the two-tail 95% critical value of the 
normal distribution, zα (2), is, from Table 6-2, 1.960. The power of the test is the fraction of the normal distribution 
above

z
s

s
z

p p

s
p

p p p p
1 2

2 1

2 1 2 1

0518
−

− −

= −
−

=β α( ( )

.
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.
. .

.
.

0516
1 960

92 87
0516
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From Table 6-2, the power of the test is 13%.

Box 6-3 • Power to Detect a 5% Survival Benefit of Using Polyethylene Bags to Keep Extremely Low 
Birth Weight Infants Warm

infants warm would be worth doing if it had a mortality 
benefit of 5%, you could not be very confident in reaching 
a negative conclusion.

Sample Size for Comparing Two Proportions
To obtain the sample size to compare two proportions, 
simply take z1−b (upper) as given and solve the resulting 
equations for n, the size of each group. Assuming that the 
two groups are the same size, this process yields

n

A
A

=
+ +













1 1
4

4

2

2

δ

δ
where

p
p p

p p

A z p p z p

=
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= − + −

2 1

2 1

2 1 2

2

2 1

δ

α β( ) (( ) upper) (( ) ( )1 12 2 2

2
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


p p p

We can use these formulas to estimate the sample size 
necessary to detect a 5% survival improvement in the 
study of using polyethylene bags to keep extreme low 
birth weight infants warm with 80% power. p1 = .87 and 
p2 = .92, so

p = + =. .
.

87 92

2
895

The desired effect size, δ  = .05, and to obtain .80 power, 
z1 − β (upper) = -.842 from Table 6-2, and

A =
−

+ − − +
⋅1 960 2 895 1 895
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Thus, to obtain 80% power to detect a 5% improve-
ment in survival, we would need 132 infants per experi-
mental group.

  �POWER AND SAMPLE SIZE FOR 
RELATIVE RISK AND ODDS RATIO*

The formulas developed above can be used to estimate 
power and sample sizes for relative risks and odds ratios. 
Instead of specifying both proportions, you simply specify 
one proportion, the desired relative risk or odds ratio, and 
compute the other proportion. Let p1 be the probability of 
disease in the unexposed members of the population and 
p2 be the probability of disease in the exposed members of 
the population.

The relative risk is the ratio of the probability of dis-
ease in those exposed to the toxin of interest over those 
not exposed,

RR
p

p

p

p
= =exposed

unexposted

2

1

so use the formulas above with

p RR p2 1= ⋅

Likewise, the odds ratio is
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p p
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−
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unexposted une

/

/
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(
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1 xxposted)

/( )
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−
−

p p

p p
2 2

1 1

1

1
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p
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P OR2
1

11 1
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+ −
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  �POWER AND SAMPLE SIZE FOR 
CONTINGENCY TABLES†

Figure 6-10 (and the corresponding charts in Appendix B) 
can also be used to compute the power and sample size for 
contingency tables. As with other power computations, 
the first step is to define the pattern you wish to be able to 
detect. This effect is specified by selecting the proportions 
of row and column observations that appear in each cell 
of the contingency table.

*If time is limited this section can be skipped without loss of continuity.
†If time is limited this section can be skipped without loss of continuity.

Table 6-3 shows the notation for the computation for 
a 3 × 2 contingency table: p11 is the proportion of all 
observations expected in the upper left cell of the table, p12 
the proportion in the upper right corner, and so on. All 
the proportions must add up to 1. The r row and c column 
sums are denoted with Rs and Cs with subscripts corre-
sponding to the rows and columns. The noncentrality 
parameter for such a contingency table is defined as

φ = N

r c

p R C

R C
ij i j

i j( )( )

( )

− − +
∑

−
1 1 1

2

where r is the number of rows, c is the number of col-
umns, and N is the total number of observations. This 
value of f is used with Figure 6-10 with νn = (r − 1)(c − 1) 
and νd = ∞ degrees of freedom.

To compute the sample size necessary to achieve a 
given power, simply reverse this process. Determine the 
necessary value of φ to achieve the desired power with 
νn = (r − 1)(c − 1) and νd = ∞ from Figure 6-10 (or the 
power charts in Appendix B). We obtain the sample size 
by solving the equation above for N, to obtain

N
r c

p R C

R C
ij i j

i j

= − − +

∑
−

φ2[( )( ) ]

( )

1 1 1
2

Power and Polyethylene Bags (Again)
We can now compute the power of the study of different 
ways to warm extremely low birth weight infants using a 
contingency table approach. We will again compute the 
power of the study to detect a 10% improvement in sur-
vival, from p1 = .87 to p2 = .97. The total sample size is N = 
140 (70 in each group). Because the infants are distributed 
equally in the two treatment groups, the fraction in each 
group (last column in Table 6-4) is .500. The pattern we 

  �TABLE 6-3. Notation for Computing Power for 
Contingency Tables

p11 p12 R1

p21 p22 R2

p31 p32 R3

C1 C2 1.00
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  TABLE 6-4. Expected Mortality Pattern

Warming Treatment

Fraction of All Infants

Lived Died Total in Treatment Group

Polyethylene bag .485 .015  .500
Traditional .435 .065  .500

 T otal .920 .080 1.000

seek to find is one in which 97% of the infants treated 
with the polyethylene bag lived, .97 × .50 = .485 of all 
infants and .03 × .50 = .015 of infants would be expected 
to die. Likewise, for the traditional treatment, 87% of 
infants would live, amounting to .50 × .87 = .435 of all 
infants with .50 × .13 = .065 dying. Figure 6-4 shows the 
pattern we want to detect in the 2 × 2 contingency table.

There are r = 2 rows and c = 2 columns, so the value of 
the noncentrality parameter is

φ =
− − +

− ⋅
⋅

140

2 1 2 1 1

485 500 920

500 920

2

( )( )

(. . . )

. .

++ −

+ −
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(. . . )

. .

(. . .
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2

2

)

. .
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= 2 18.

Use this value of f = 1.54 with νn = (r – 1)(c – 1) = 
(2 – 1)(2 – 1) = 1 numerator degree of freedom and νd = 
∞ denominator degrees of freedom in the power chart in 
Appendix B to find that the power is about 60%, as before.

  �PRACTICAL PROBLEMS 
IN USING POWER

If you know the size of the treatment effect, population 
standard deviation, a, and sample size, you can use graphs 
like Figure 6-9 to estimate the power of a t test after the 
fact. Unfortunately, in practice, one does not know how 
large an effect a given treatment will have (finding that out 
is usually the reason for the study in the first place), so you 
must specify how large a change is worth detecting to com-
pute the power of the test.

This requirement to go on record about how small a 
change is worth detecting may be one reason that very few 

people report the power of the tests they use. While such 
information is not especially important when investiga-
tors report that they detected a difference, it can be quite 
important when they report that they failed to detect one. 
If the power of the test to detect a clinically significant 
effect is small, say 25%, this report will mean something 
quite different than if the test was powerful enough to 
detect a clinically significant difference 85% of the time.

These difficulties are even more acute when using 
power computations to decide on the sample size for a 
study in advance. Completing this computation requires 
that investigators estimate not only the size of the effect 
they think is worth detecting and the confidence with 
which they hope to accept (b ) or reject (a) the hypothesis 
that the treatment is effective but also the standard devia-
tion of the population being studied. Sometimes existing 
information can be used to estimate these numbers; 
sometimes investigators do a pilot study to estimate them; 
sometimes they simply guess.

  WHAT DIFFERENCE DOES IT MAKE?

In Chapter 4 we discussed the most common error in the 
use of statistical methods in the medical literature, inap-
propriate use of the t test. Repeated use of t tests increases 
the chances of reporting a “statistically significant” differ-
ence above the nominal levels one obtains from the t 
distribution. In the language of this chapter, it increases 
the Type I error. In practical terms, this increases the 
chances that an investigator will report some procedure or 
therapy capable of producing an effect beyond what one 
would expect from chance variation when the evidence 
does not actually support this conclusion.

This chapter examined the other side of the coin, the 
fact that perfectly correctly designed studies employing 
statistical methods correctly may fail to detect real, per-
haps clinically important, differences simply because the 
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sample sizes are too small to give the procedure enough 
power to detect the effect. This chapter shows how you 
can estimate the power of a given test after the results are 
reported in the literature and also how investigators can 
estimate the number of subjects they need to study to 
detect a specified difference with a given level of confi-
dence (say, 95%; that is, a = 0.05). Such computations are 
often quite distressing because they often reveal the need 
for a large number of experimental subjects, especially 
compared with the relatively few patients who typically 
form the basis for clinical studies.* Sometimes the inves-
tigators increase the size of the difference they say they 
wish to detect, decrease the power they find acceptable, or 
ignore the whole problem in an effort to reduce the neces-
sary sample size. Most medical investigators never 
confront these problems because they have never  
heard of power.

In 1978, Jennie Freiman and colleagues† examined 71 
randomized clinical trials published between 1960 and 
1977 in journals, such as The Lancet, the New England 
Journal of Medicine, and the Journal of the American Med-
ical Association, reporting that the treatment studied did 
not produce a “statistically significant” (P < .05) improve-
ment in clinical outcome. Only 20% of these studies 
included enough subjects to detect a 25% improvement in 
clinical outcome with a power of .50 or better. In other 
words, if the treatment produced a 25% reduction in mor-
tality rate or other clinically important endpoint, there 
was less than a 50:50 chance that the clinical trial would be 
able to detect it with P < .05. Moreover, Freiman and col-
leagues found that only one of the 71 papers stated that a 
and b were considered at the start of the study; 18 recog-
nized a trend in the results, whereas 14 commented on the 
need for a larger sample size.

Fifteen years later, in 1994, D Mohler and colleagues‡ 
revisited this question by examining randomized con-
trolled trials in these same journals published in 1975, 

*Fletcher RA, Fletcher SW. Clinical research in general medical journals: 
a 30-year perspective. N Engl J Med. 1979;301:180–183 report the median 
number of subjects included in clinical studies published in the Journal 
of the American Medical Association, The Lancet, and the New England 
Journal of Medicine in 1946 to 1976 ranged from 16 to 36 people.
†Freiman JA, Chalmers TC, Smith H Jr, Kuebler RR. The importance of 
beta, the type II error and sample size in the design and interpretation of 
the randomized controlled trial. N Engl J Med. 1978;299:690–694.
‡Mohler D, Dulberg CS, Wells GA. Statistical power, sample size, and their 
reporting in randomized clinical trials. JAMA. 1994;272:122–124.

1980, 1985, and 1990. While the number of randomized 
controlled trials published in 1990 was more than twice 
the number published in 1975, the proportion reporting 
negative results remained reasonably constant, at about 
27% of all the trials. Only 16% and 36% of the negative 
studies had an adequate power (.80) to detect a 25% or 
50% change in outcome, respectively. Only one third of 
the studies with negative results reported information 
regarding how the sample sizes were computed. An evalu-
ation of randomized controlled trials published in the 
surgical literature between 1988 and 1998 found that only 
25% of the trials were large enough to detect a 50% differ-
ence in therapeutic effect with .80 power, and only 29% of 
the papers included a formal sample size calculation.§

Nine years later, in 2003, Melinda Maggard and col-
leagues examined papers published between 1999 and 
2002 showed that half the studies were powered to detect 
a 50% difference in therapeutic effect.¶

Things are improving, but slowly.
The fact remains, however, that publication of “nega-

tive” studies without adequate attention to having a large 
enough sample size to draw definitive conclusions remains 
a problem. Thus, in this area, like the rest of statistical 
applications in the medical literature, it is up to respon-
sible readers to interpret what they read rather than take 
it at face value.

Other than throwing your hands up when a study with 
low power fails to detect a statistically significant effect, is 
there anything an investigator or clinician reading the lit-
erature can learn from the results? Yes. Instead of focusing 
on the accept–reject logic of statistical hypothesis testing,

§Dimick JB, Diener-West M, Lipsett PA. Negative results of randomized 
clinical trials published in the surgical literature. Arch Surg. 2001;136:
796–800.
¶Maggard MA, O’Connell JB, Liu JH, Etzioni DA, Ko CY. Sample size cal-
culations in surgery: are they done correctly? Surgery. 2003;134:275–279.
There is another approach that can be used in some clinical trials to avoid 
this accept–reject problem. In a sequential trial the data are analyzed after 
each new individual is added to the study and the decision made to  
(1) accept the hypothesis of no treatment effect, (2) reject the hypothesis, 
or (3) study another individual. Sequential tests generally allow one to 
achieve the same levels of α and b for a given size treatment effect with a 
smaller sample size than the methods discussed in this book. This smaller 
sample size is purchased at the cost of increased complexity of the statistical 
procedures. Sequential analyses are often performed by repeated use of the 
statistical procedures presented in this book, such as the t test. This proce-
dure is incorrect because it produces overoptimistic P values, just as the 
repeated use of t tests (without the Bonferroni or Holm-Sidak correction) 
produces erroneous results when one should do an analysis of variance.
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 one can try to estimate how strongly the observations 
suggest an effect by estimating the size of the hypothesized 
effect together with the uncertainty of this estimate.* We 
laid the groundwork for this procedure in Chapters 2, 4, 
and 5 when we discussed the standard error and the t dis-
tribution. The next chapter builds on this base to develop 
the idea of confidence limits.

  PROBLEMS

6-1 Both diabetes and high cholesterol interact to increase 
the risk of heart disease. Changing diet affects both blood 
sugar and cholesterol. To investigate how different diets used 
to control diabetes affects cardiovascular risk factors, Neal 
Barnard and colleagues† compared the effects of a low-fat 
vegan diet with the diet recommended by the American Dia-
betic Association. What is the power of this study to detect a 
change in mean total cholesterol from 190 to 165 mg/dL 
with a sample size of 20 people on each diet with 95% con-
fidence? Based on earlier experience, the standard deviation 
of total cholesterol in the population is about 35 mg/dL.

6-2 How large a sample size would be necessary to increase 
the power of this study to detect a 25 mg/dL change in 
total cholesterol?

6-3 What is the minimum detectable effect one could 
obtain with 20 people in each group and 80% power?

6-4 In Problem 3-5 (and again in Prob. 4-5), we decided 
that there was insufficient evidence to conclude that men 
and women who have had at least one vertebral fracture 
differ in vertebral bone density. What is the power of this 
test to detect average (with a = 0.05) bone density in men 
20% lower than the average bone density for women?

6-5 How large a sample would be necessary to be 90% 
confident that men have vertebral bone densities that dif-
fer by at least 30% of the values for women when you wish 
to be 95% confident in any conclusion that vertebral bone 
densities differ between men and women?

6-6 Use the data in Problem 3-2 to find the power of 
detecting a change in mean forced midexpiratory flow of 
0.25 L/s with 95% confidence.

6-7 Use the data in Problem 3-3 to find the power of 
detecting an increase in a change in stair climbing power 
of 50 and 100 W with 95% confidence.

6-8 How large must each sample group be to have an 80% 
power to detect a change of 80 W with 95% confidence?

6-9 What is the power of the experiment in Problem 5-4 to 
detect a situation in which nefazodone and psychotherapy 
each causes remission one-third of the time, and nefazo-
done and psychotherapy combined cause remission one-
half of the time? Assume that the same number of people 
take each treatment as in Problem 5-4. Use a = 0.05.

6-10 How large would the sample size need to be in Prob-
lem 6-9 to reach 80% power?

*One quick way to use a computerized statistical package to estimate if 
getting more cases would resolve a power problem is to simply copy the 
data twice and rerun the analysis on the doubled data set. If the results 
become less ambiguous, it suggests that obtaining more cases (on the 
assumption that the data will be similar to that which you have already 
obtained) will yield less ambiguous results. This procedure is, of course, 
not a substitute for a formal power analysis and would certainly not be 
reportable in a scientific paper, but it is an easy way to get an idea of 
whether gathering more data would be worthwhile.
†Barnard N, et al. A low-fat vegan diet improves glycemic control and 
cardiovasculat risk factors in a randomized clinical trial in individuals 
with type 2 diabetes. Diabetes Care 2006;29: 1777–1783.
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Confidence Intervals

develop the tools to make this statement more precise and 
generalize it to apply to other estimation problems, such 
as the size of the effect a treatment produces. The result-
ing estimates, called confidence intervals, can also be used 
to test hypotheses.* This approach yields exactly the same 
conclusions as the procedures we discussed earlier 
because it simply represents a different perspective on 
how to use concepts like the standard error, t, and normal 
distributions. Confidence intervals are also used to esti-
mate the range of values that include a specified propor-
tion of all members of a population, such as the “normal 
range” of values for a laboratory test.

  �THE SIZE OF THE TREATMENT EFFECT 
MEASURED AS THE DIFFERENCE OF 
TWO MEANS

In Chapter 4, we defined the t statistic to be

t = Difference of sample means

Standard error oof difference of sample means

then computed its value for the data observed in an exper-
iment. Next, we compared the result with the value tα that 
defined the most extreme 100α percent of the possible 
values to t that would occur (in both tails) if the two 

All the statistical procedures developed so far were 
designed to help decide whether or not a set of observa-
tions is compatible with some hypothesis. These proce-
dures yielded P values to estimate the chance of reporting 
that a treatment has an effect when it really does not and 
the power to estimate the chance that the test would detect 
a treatment effect of some specified size. This decision-
making paradigm does not characterize the size of the dif-
ference or illuminate results that may not be statistically 
significant (i.e., not associated with a value of P below .05) 
but does nevertheless suggest an effect. In addition, since 
P depends not only on the magnitude of the treatment 
effect but also the sample size, it is not unusual for exper-
iments with large sample sizes to yield very small values of 
P (what investigators often call “highly significant” results) 
when the magnitude of the treatment effect is so small 
that it is clinically or scientifically unimportant. As 
Chapter 6 noted, it can be more informative to think not 
only in terms of the accept–reject approach of statistical 
hypothesis testing but also to estimate the size of the treat-
ment effect together with some measure of the uncer-
tainty in that estimate.

This approach is not new; we used it in Chapter 2 when 
we defined the standard error of the mean to quantify the 
certainty with which we could estimate the population 
mean from a sample. We observed that since the popula-
tion of all sample means at least approximately follows a 
normal distribution, the true (and unobserved) popula-
tion mean will lie within about 2 standard errors of the 
mean of the sample mean 95% of the time. We now 

*Some statisticians believe that confidence intervals provide a better way to 
think about the results of experiments than traditional hypothesis testing.
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samples were drawn from a single population. If the 
observed value of t exceeded tα (given in Table 4-1), we 
reported a “statistically significant” difference, with P < α 
As Figure 4-4 showed, the distribution of possible values 
of t has a mean of zero and is symmetric about zero.

On the other hand, if the two samples are drawn from 
populations with different means, the distribution of val-
ues of t associated with all possible experiments involving 
two samples of a given size is not centered on zero; it does 
not follow the t distribution. As Figures 6-3 and 6-5 
showed, the actual distribution of possible values of t has 
a nonzero mean that depends on the size of the treatment 
effect. It is possible to revise the definition of t so that it 
will be distributed according to the t distribution in Figure 
4-4 regardless of whether or not the treatment actually has 
an effect. This modified definition of t is

t = −
Difference of sample means

truue difference in population means

Standard eerror of difference of sample means

Notice that if the hypothesis of no treatment effect is 
correct, the difference in population means is zero and 
this definition of t reduces to the one we used before. The 
equivalent mathematical statement is

t
X X

s
X X

=
− − −

−

( ) ( )1 2 1 2

1 2

µ µ

In Chapter 4 we computed t from the observations, 
then compared it with the critical value for a “big” value 
of t with v = n1 + n2 - 2 degrees of freedom to obtain a P 
value. Now, however, we cannot follow this approach since 
we do not know all the terms on the right side of the equa-
tion. Specifically, we do not know the true difference in 
mean values of the two populations from which the samples 
were drawn, m1 - m2. We can, however, use this equation to 
estimate the size of the treatment effect, m1 - m2.

Instead of using the equation to determine t, we will 
select an appropriate value of t and use the equation to 
estimate m1 - m2. The only problem is that of selecting an 
appropriate value for t.

By definition, 100α percent of all possible values of t 
are more negative than -tα or more positive than +tα . For 
example, only 5% of all possible t values will fall outside 
the interval between -t.05 and +t.05, where t.05 is the critical 
value of t that defines the most extreme 5% of the t distri-
bution (tabulated in Table 4-1). Therefore, 100 (1 - α) 

percent of all possible values of t fall between -t α and +tα. 
For example, 95% of all possible values of t will fall 
between -t.05 and +t.05.

Every different pair of random samples we draw in our 
experiment will be associated with different values of, 

X X1 2- and s
X X1 2- and 100 (1 - α) percent of all possible 

experiments involving samples of a given size will yield 
values of t that fall between -tα and +tα . Therefore, for 
100 (1 - α) percent of all possible experiments

−
− − −

−

t
X X

s
t

X X
α α

µ µ
< < +

( ) ( )1 2 1 2

1 2

Solve this equation for the true difference in sample 
means

( ) ( )X X t s X X t s
X X X X1 2 1 2 1 2

1 2 1 2
− − < − < − +− −α αµ µ

In other words, the actual difference of the means of 
the two populations from which the samples were drawn 
will fall within ta standard errors of the difference of the 
sample means of the observed difference in the sample 
means. (ta has v = n1 + n2 - 2 degrees of freedom, just as 
when we used the t distribution in hypothesis testing). 
This range is called the 100 (1 - α) percent confidence inter-
val for the difference of the means. For example, the 95% 
confidence interval for the true difference of the popula-
tion means is

( ) ( ). .X X t s X X t s
X X X X1 2 05 1 2 1 2 051 2 1 2

− − < − < − +− −µ µ

This equation defines the range that will include the 
true difference in the means for 95% of all possible exper-
iments that involve drawing samples from the two popu-
lations under study.

Since this procedure to compute the confidence 
interval for the difference of two means uses the t distri-
bution, it is subject to the same limitations as the t test. 
In particular, the samples must be drawn from popula-
tions that follow a normal distribution at least approxi-
mately.*

*It is also possible to define confidence intervals for differences in means 
when there are multiple comparisons, by using a Bonferroni or Holm-
Sidak correction to determine the appropriate value of t. For a detailed 
discussion of these computations, see Zar JH. Biostatistical Analysis, 4th 
ed. Upper Saddle River, NJ: Prentice Hall;  1999.
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  THE EFFECTIVE DIURETIC

Figure 6-1 showed the distributions of daily urine pro-
duction for a population of 200 individuals when they 
are taking a placebo or a drug that is an effective 
diuretic. The mean urine production of the entire popu-
lation when all members are taking the placebo is mpla = 
1200 mL/day. The mean urine production for the popu-
lation when all members are taking the drug is mdr = 
1400 mL/day. Therefore, the drug increases urine 
production by an average of mdr - mpla = 1400 - 1200 = 
200 mL/day. An investigator, however, cannot observe 
every member of the population and must estimate the 
size of this effect from samples of people observed when 
they are taking the placebo or the drug. Figure 6-1 
shows one pair of such samples, each of 10 individuals. 
The people who received the placebo had a mean urine 
output of 1180 mL/day, and the people receiving the 
drug had a mean urine output of 1400 mL/day. Thus, 
these two samples suggest that the drug increased urine 
production by X Xdr pla- = 1400 - 1180 = 220 mL/day. 
The random variation associated with the sampling 
procedure led to a different estimate of the size of the 
treatment effect from that really present. Simply pre-
senting this single estimate of 220 mL/day increase in 
urine output ignores the fact that there is some uncer-
tainty in the estimates of the true mean urine output in 
the two populations, so there will be some uncertainty 
in the estimate of the true difference in urine output. 
We now use the confidence interval to present an alter-
native description of how large a change in urine output 
accompanies the drug. This interval describes the aver-
age change seen in the people included in the experi-
ment and also reflects the uncertainty introduced by the 
random sampling process.

To estimate the standard error of the difference of the 
means s

X Xdr pla- we first compute a pooled estimate of the 
population variance. The standard deviations of observed 
urine production were 245 and 144 mL/day for people 
taking the drug and the placebo, respectively. Both sam-
ples included 10 people; therefore,

s s s2 2 2 2 2 21

2

1

2
245 144 201= + = + =( ) ( )dr pla

and

s
s

n

s

nX Xdr pla
dr pla

m− = + = + =
2 2 2 2201

10

201

10
89 9. LL/day

To compute the 95% confidence interval, we need the 
value of t.05 from Table 4-1. Since each sample contains n = 
10 individuals, we use the value of t.05 corresponding to 
v = 10 + 10 - 2 = 18 degrees of freedom. From Table 4-1, 
t.05 = 2.101.

Now we are ready to compute the 95% confidence 
interval for the mean change in urine production that 
accompanies use of the drug

( ) (.X X t s X X
X Xdr pla dr pla dr pla

dr pla
− − < − < −−05 µ µ ))

.+ −dr pla
t s

X X05

	 220 - 2.101 ? 89.9 < μdr - μpla < 220 + 2.101 ? 89.9

	              31 mL/day < μdr - μpla < 409 mL/day

Thus, on the basis of this particular experiment, we can 
be 95% confident that the drug increases average urine 
production somewhere between 31 and 409 mL/day. The 
range of values from 31 to 409 is the 95% confidence inter-
val corresponding to this experiment. As Figure 7-1A 
shows, this interval includes the actual change in mean 
urine production, μdr - μpla, 200 mL/day.

More Experiments
Of course, there is nothing special about the two sam-
ples of 10 people each selected in the study we just ana-
lyzed. Just as the values of the sample mean and standard 
deviation vary with the specific random sample of peo-
ple we happen to draw, so will the confidence interval 
we compute from the resulting observations. (This 
should not be surprising, since the confidence interval 
is computed from the sample means and standard devi-
ations.) The confidence interval we just computed cor-
responds to the specific random sample of individuals 
shown in Figure 6-1. Had we selected a different random 
sample of people, say those in Figure 6-2, we would have 
obtained a different 95% confidence interval for the size 
of the treatment effect.

The individuals selected at random for the experiment 
in Figure 6-2 show a mean urine production of 1216 mL/
day for the people taking the placebo and 1368 mL/day for 
the people taking the drug. The standard deviations of the 
two samples are 97 and 263 mL/day, respectively. In these 
two samples the drug increased average urine production by 
X Xdr pla mL/day.− = − =1368 1216 152 The pooled esti
mate of the population variance is

s2 2 2 21

2
97 263 198= + =( )
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FIGURE 7-1. (A) The 95% confidence in-
terval for the change in urine production 
produced by the drug using the random 
samples shown in Figure 6-1. The inter-
val contains the true change in urine pro-
duction, 200 mL/day (indicated by the 
dashed line). Since the interval does not 
include zero (indicated by the solid line), 
we can conclude that the drug increases 
urine output (P < .05). (B) The 95% con-
fidence interval for change in urine pro-
duction computed for the random 
samples shown in Figure 6-2. The inter-
val includes the actual change in urine 
production (200 mL/day), but it also 
includes zero, so that it is not possible 
to reject the hypothesis of no drug effect 
(at the 5% level). (C) The 95% confidence 
intervals for 48 more sets of random 
samples, for example, experiments, drawn 
from the two populations in Figure 6-1A. 
All but 3 of the 50 intervals shown in 
this figure include the actual change in 
urine production; 5% of all possible 95%  
confidence intervals will not include the 
200 mL/day. Of the 50 confidence  
intervals, 22 include zero, meaning that 
the data do not permit rejecting the 
hypothesis of no difference at the 5% 
level. In these cases, we would make a 
Type II error. Since 44% of all possible 
95% confidence intervals include zero, 
the probability of detecting a change in 
urine production is 1 - β = .56.

in which case,

s
X Xdr pla

mL/day− = + =198

10

198

10
88 5

2 2

.

So the 95% confidence interval for the mean change in 
urine production associated with the sample shown in 
Figure 6-2 is

	 �152 - 2.101 ? 88.5 < μdr - μpla < 152 + 2.101 ? 88.5

           -34 mL/day < μdr - μpla < 340 mL/day

This interval, while different from the first one we 
computed, also includes the actual mean increase in urine 
production, 200 mL/day (Fig. 7-1B). Had we drawn this 
sample rather than the one in Figure 6-1, we would have 
been 95% confident that the drug increased average urine 
production somewhere between -34 and 338 mL/day. 
(Note that this interval includes negative values, indicat-
ing that the data do not permit us to exclude the possibil-
ity that the drug decreased as well as increased average 
urine production. This observation is the basis for using 
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confidence intervals to test hypotheses later in this chap-
ter.) In sum, the specific 95% confidence interval we 
obtain depends on the specific random sample we happen 
to select for observation.

So far, we have seen two such intervals that could arise 
from random sampling of the populations in Figure 6-1; 
there are more than 1027 possible samples of 10 people 
each, so there are more than 1027 possible 95% confidence 
intervals. Figure 7-1C shows 48 more of them, computed 
by selecting two samples of 10 people each from the pop-
ulations of placebo and drug takers. Of the 50 intervals 
shown in Figure 7-1, all but 3 (about 5%) include the 
value of 200 mL/day, the actual change in average urine 
production associated with the drug.

  WHAT DOES “CONFIDENCE” MEAN?

We are now ready to attach a precise meaning to the term 
95% confident. The specific 95% confidence interval asso-
ciated with a given set of data will or will not actually 
include the true size of the treatment effect, but in the 
long run 95% of all possible 95% confidence intervals will 
include the true difference of mean values associated with 
the treatment. As such, it describes not only the size of the 
effect but quantifies the certainty with which one can esti-
mate the size of the treatment effect.

The size of the interval depends on the level of confi-
dence you want to have that it will actually include the 
true treatment effect. Since tα increases as α decreases, 
requiring a greater and greater fraction of all possible con-
fidence intervals to cover the true effect will make the 
intervals larger. To see this, let us compute the 90%, 95%, 
and 99% confidence intervals associated with the data in 

Figure 6-1, where the observed mean difference in urine 
production was 220 mL/day. To do so, we need only sub-
stitute the values of t.10 and t.01 corresponding to n = 18 
from Table 4-1 for tα in the formula derived above. (We 
have already solved the problem for t.05.)

For the 90% confidence interval, t.10 = 1.734, so the 
interval associated with the samples in Figure 6-1 is

�	 220 - 1.734 ? 89.5 < μdr - μpla < 220 + 1.734  ? 89.5

	             65 mL/day < μdr - μpla < 375 mL/day

which, as Figure 7-2 shows, is narrower than the 95% 
interval. Does this mean the data now magically yield a 
more precise estimate of the treatment effect? No. If you 
are willing to accept the risk that 10% of all possible con-
fidence intervals will not include the true change in mean 
values, you can get by with a narrower interval.

On the other hand, if you want to specify an interval 
selected from a population of confidence intervals, 99% of 
which include the true change in population means, you 
compute the confidence interval with t.01 = 2.878. The 
99% confidence interval associated with the samples in 
Figure 6-1 is

220 2 878 89 5 220 2 878 89 5− < − < +⋅ ⋅. . . .µ µdr pla

− < − <38 478mL/day mL/daydr plaµ µ

This interval is wider than the other two in Figure 7-2.
In sum, the confidence interval gives a range that is 

computed in the hope that it will include the parameter of 
interest (in this case the difference of two population 
means). The confidence level associated with the interval 
(say 95%, 90%, or 99%) gives the percentage of all such 
possible intervals that will actually include the true value 

FIGURE 7-2. Increasing the level of 
confidence you wish to have that a 
confidence interval includes the true 
treatment effect makes the interval wider. 
All the confidence intervals in this figure 
were computed from the two random 
samples shown in Figure 6-1. The 90% 
confidence interval is narrower than the 
95% confidence interval, and the 99% 
confidence interval is wider. The actual 
change in urine production, 200 mL/day, 
is indicated with the dashed line.
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of the parameter. A particular interval will or will not 
include the true value of the parameter. Unfortunately, 
you can never know whether or not that interval does. All 
you can say is that the chances of selecting an interval that 
does not include the true value is small (say 5%, 10%, or 
1%). The more confidence you wish to have that the inter-
val will cover the true value, the wider the interval.

  �CONFIDENCE INTERVALS CAN BE USED 
TO TEST HYPOTHESES

As already noted, confidence intervals can provide another 
way to test statistical hypotheses. This fact should not be 
surprising because we use all the same ingredients, the dif-
ference of the sample means, the standard error of the dif-
ference of sample means, and the value of t that 
corresponds to the biggest α fraction of the possible val-
ues defined by the t distribution with n degrees of free-
dom.

Given a confidence interval one cannot say where 
within the interval the true difference in population 
means lies. If the confidence interval contains zero the 
evidence represented by the experimental observations is 
not sufficient to rule out the possibility that μ1 - μ2 = 0, 
that is, that μ1 = μ2, the hypothesis that the t test tests. 
Hence, we have the following rule:

If the 100 (1 - α) percent confidence interval associ-
ated with a set of data includes zero, there is not suf-
ficient evidence to reject the hypothesis of no effect 
with P < α. If the confidence interval does not include 
zero, there is sufficient evidence to reject the hypoth-
esis of no effect with P < α.

Apply this rule to the two examples just discussed. The 
95% confidence interval in Figure 7-1A does not include 
zero, so we can report that the drug produced a statisti-
cally significant change in urine production (P < .05), just 
as we did using the t test. The 95% confidence interval in 
Figure 7-1B includes zero, so the random sample (shown 
in Fig. 6-2) used to compute it does not provide sufficient 
evidence to reject the hypothesis that the drug has no 
effect. This, too, is the same conclusion we reached before.

Of the fifty 95% confidence intervals shown in Figure 7-1, 
twenty-two include zero. Hence 22/50 = 44% of these ran-
dom samples do not permit reporting a difference with 95% 
confidence, that is, with P < .05. If we looked at all possible 
95% confidence intervals computed for these two popula-
tions with two samples of 10 people each, we would find that 

44% of them include zero, meaning that we would fail to 
report a true difference, that is, would make a Type II error, 
44% of the time. Hence, β = .44, and the power of the test is 
.56, which is what we found before (compare with Fig. 6-4).

The confidence interval approach to hypothesis test-
ing offers two potential advantages. In addition to per-
mitting you to reject the hypothesis of no effect when 
the interval does not include zero, it also gives informa-
tion about the size of the effect. Thus, if a result reaches 
statistical significance more because of a large sample 
size than because of a large treatment effect, the confi-
dence interval will show it. In other words, it will make 
it easier to recognize effects that can be detected with 
confidence but are too small to be of clinical or scien-
tific significance.

For example, suppose we wish to study the potential 
value of a proposed antihypertensive drug. We select two 
samples of 100 people each and administer a placebo to 
one group and the drug to the other. The treated group 
has a mean diastolic pressure of 81 mmHg and a standard 
deviation of 11 mmHg; the control (placebo) group has a 
mean blood pressure of 85 mmHg and a standard devia-
tion of 9 mmHg. Are these data consistent with the 
hypothesis that the diastolic blood pressure among people 
taking the drug and placebo were actually no different? To 
answer this question, we use the data to complete a t test. 
The pooled-variance estimate is

s2 2 2 2 21

2
11 9 10= + =( ) mmHg

so

t
X X

s
X X

= − = −

+(−

dr pla

dr pla

81 85

10 100 10 1002 2( / ) / ))
= −4

1.41
= −2 83.

This value is more negative than -2.61, the critical 
value of t that defines the 1% most extreme of the t distri-
bution with n = 2(n - 1) = 198 degrees of freedom (from 
Table 4-1). Thus, we conclude that the drug lowers dia-
stolic blood pressure (P < .01).

But is this result clinically significant? To gain a feeling 
for this, compute the 95% confidence interval for the mean 
difference in diastolic blood pressure for people taking the 
placebo versus the drug. Since t.05 for 198 degrees of free-
dom is (from Table 4-1) 1.973, the confidence interval is

− − < − < − +

−

⋅ ⋅4 1 972 1 41 4 1 972 1 41

6

. . . .µ µdr pla

.. .8 1 2mmHg mmHgdr pla< − < −µ µ



C ONF ID EN CE  IN TERVALS 131

In other words, we can be 95% confident that the drug 
lowers blood pressure between –6.8 and –1.2 mmHg. This 
is not a very large effect, especially when compared with 
standard deviations of the blood pressures observed 
within each of the samples, which are around 10 mmHg. 
Thus, while the drug does seem to lower blood pressure 
on the average, examining the confidence interval permit-
ted us to see that the size of the effect is not very impres-
sive. The small value of P was more a reflection of the 
sample size than the size of the effect on blood pressure.

The study of the effects of using polyethylene bags to 
keep extremely low birth weight infants warm discussed 
in Chapter 5 found no difference in survival between 
using these bags and traditional methods despite the fact 
that the bags did statistically significantly increase body 
temperature by 1°C. Box 7-1 shows that the 95% confi-
dence interval for the actual increase in temperature 
ranges from .67°C to 1.33°C. While this difference was 
statistically significant, it does not appear to have been a 
big enough effect to be clinically significant.

The skin temperature for the 70 infants wrapped in polyethylene bags was 36°C with a standard deviation of 1°C 
and 35°C with a standard deviation of 1°C for the 70 infants kept warm using traditional methods. To compute the 
95% confidence interval for the difference in temperature, we first compute the observed mean difference in tem-
perature

X Xbag trad C− = − = °36 35 1

and the standard error of the difference

sX X

s
n

s
nbag trad

bag trad

C− = + = + = °
2 2 2 21

70
1
70

169.

because

s
n s n s

n n
bag2

2 21 1
=

( ) ( )− + −
+ −

bag trad trad

bag trad 22
70 1 1 70 1 1

70 70 2
1

2 2

= − + −
+ −

= °( ) ( )
C

	T here are ν = nbag + ntrad - 2 = 70 + 70 - 2 = 138 degrees of freedom associated with this estimate. From 
Table 4-1 the critical value of t that defines the 5% most extreme values of the t distribution for 138 degrees of 
freedom is 1.977, so the 95% confidence interval for the difference in temperature is 

1 1 977 169 1 1 977 169

67

−

°

⋅ ⋅. . . .

.

< < +

<

µ − µbag trad

C µµ − µbag trad C< 1 33. °

	 Because the 95% confidence interval does not include 0, we can reject the null hypothesis that the wrapping 
technique did not affect the infants’ temperature (P < .05).
	 From Table 4-1, the critical value of t that defines the 1% most extreme values of the t distribution is 2.611, so 
the 99% confidence interval for the difference in temperature is 

1 2 611 169 1 2 611 169

54

− < − < +

<

. . . .

.

⋅ ⋅
°

µ µbag trad

C µµ µbag trad C− < 1 44. °

	 Because the 99% confidence interval also excludes 0, we can also reject the null hypothesis with P < .01. 
(Compare this result with Prob. 4-2.)

Box 7-1 • The Effect on Temperature of Using Polyethylene Bags to Keep Extreme 
Low Birth Weight Infants Warm
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This example illustrates the importance of examining 
not only the P values reported in a study but also the size 
of the treatment effect compared with the variability 
within each of the treatment groups. Usually this com-
parison requires converting the reported standard errors 
of the mean reported in the paper to standard deviations 
by multiplying them by the square root of the sample size. 
This simple step often shows clinical studies to be of 
potential interest in illuminating physiological mecha-
nisms but of little value in diagnosing or managing a spe-
cific patient because of person-to-person variability.

  �CONFIDENCE INTERVAL FOR 
THE POPULATION MEAN

The procedure we developed above can be used to com-
pute a confidence interval for the mean of the population 
from which a sample was drawn. The resulting confidence 
interval is the origin of the rule, stated in Chapter 2, that 
the true (and unobserved) mean of the original population 
will lie within about 2 standard errors of the mean of the 
sample mean for 95% of all possible samples.

The confidence intervals we computed up to this point 
are based on the fact that

t =

Difference of sample means
difference i- nn population means

Standard error of differeence of sample means

follows the t distribution. It is also possible to show that

t = −Sample mean population mean

Standard error of mean

follows the t distribution. The equivalent mathematical 
statement is

t
X

s
X

= –µ

We can compute the 100 (1 - α) percent confidence 
interval for the population mean by obtaining the value of 
tα corresponding to v = n - 1 degrees of freedom, in which 
n is the sample size. Substitute this value for t in the equa-
tion and solve for μ (just as we did for μ1 - μ2 earlier).

X t s X t s
X X

− < < +α αµ

The interpretation of the confidence interval for the 
mean is analogous to the interpretation of the confidence 
interval for the difference of two means: every possible ran-
dom sample of a given size can be used to compute a, say, 

95% confidence interval for the population mean, and 
this same percentage (95%) of all such intervals will 
include the true population mean.

It is common to approximate the 95% confidence inter-
val with the sample mean plus or minus twice the standard 
error of the mean because the values of t.05 are approxi-
mately 2 for sample sizes above about 20 (see Table 4-1). 
This approximate rule of thumb does underestimate the 
size of the confidence interval for the mean, however, 
especially for the small sample sizes common in biomedi-
cal research.

  �THE SIZE OF THE TREATMENT EFFECT 
MEASURED AS THE DIFFERENCE OF 
TWO RATES OR PROPORTIONS

It is easy to generalize the procedures we just developed to 
permit us to compute confidence intervals for rates and 
proportions. In Chapter 5 we used the statistic

z = Difference of sample proportions

Standard eerror of difference of proportions

to test the hypothesis that the observed proportions of 
events in two samples were consistent with the hypothesis 
that the event occurred at the same rate in the two popula-
tions. It is possible to show that even when the two popu-
lations have different proportions of members with the 
attribute, the ratio

z = −
Difference of sample proportions

differencce in population proportions

Standard errorr of difference of
sample proportions

is distributed approximately according to the normal 
distribution so long as the sample sizes are large 
enough.

If p1 and p2 are the actual proportions of members of 
each of the two populations with the attribute, and if the 
corresponding estimates computed from the samples are
p̂1 and p̂2 , respectively,

z
p p p p

sp p

=
− − −

−

( ˆ ˆ ) ( )

ˆ ˆ

1 2 1 2

1 2

We can use this equation to define the 100 (1 - α) 
percent confidence interval for the difference in propor-
tions by substituting zα for z in this equation and solv-
ing just as we did before. zα is the value that defines the 
most extreme α proportion of the values in the normal 
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distribution;* zα = z.05 = 1.960 is commonly used, since 
it is used to define the 95% confidence interval. Thus,

( ˆ ˆ ) ( ˆ ˆ )ˆ ˆ ˆp p z s p p p p z sp p p1 2 1 2 1 21 2 1
− − < − < − +−α α −− p̂2

for 100 (1 - α) percent of all possible samples.

Difference in Survival for Two Methods for Keeping 
Extremely Low Birth Weight Infants Warm
In Chapter 5, we used a contingency table analysis to test the 
null hypothesis that polyethylene bags and traditional 
warming methods had the same effect on infant survival. We 
now use a confidence interval approach to test the same null 
hypothesis.

The data in Table 5-3 showed that 90% (63 out of 70) 
of infants kept warm with polyethylene bags survived as 
did 87% (61 of 70) of infants kept warm using traditional 
methods. Therefore, the observed difference in survival 
was ˆ ˆ . . . .p pbag trad− = − =90 87 03 The overall proportion of 
all infants who survived is

ˆ .
.p = +

+
=83 61

70 70
886

So the standard error of the difference is

s p p
n np pˆ ˆ

ˆ ( ˆ)

.

bag trad
bag trad

− = − +










=

1
1 1

8886 1 886
1

70

1

70
054( . ) .− +





=

Therefore, the 95% confidence interval for the differ-
ence in survival rates is

(ˆ ˆ ) (. ˆ ˆp p z s p pp pbag trad bag tra
bag trad

− − < −−05 dd

bag

)

( ˆ ˆ< −p pp z s p ptrad
bag trad

) . ˆ ˆ+ −05

. . . ( ) . . .03 1 960 054 03 1 960 054− < − < +

−

⋅ ⋅p pbag trad

.. ( ) .076 136< − <p pbag trad

Thus, we can be 95% confident that the true difference 
in survival lies between a 7.6% better survival rate for 

traditional warming methods and a 13.6% better survival 
rate for the polyethylene bags.† Since the 95% confidence 
interval contains zero, there is not sufficient evidence to 
reject the null hypothesis that the two warming tech-
niques are associated with the same survival rates. Fur-
thermore, the confidence interval ranges about equally on 
both sides of zero, so there is not even a suggestion that 
one method is superior to the other.

  �HOW NEGATIVE IS A “NEGATIVE” 
CLINICAL TRIAL?

Chapter 6 discussed the study of 71 randomized clinical 
trials that did not demonstrate a statistically significant 
improvement in clinical outcome (mortality, complica-
tions, or the number of patients who showed no improve-
ment, depending on the study). Most of these trials 
involved too few patients to have sufficient power to be 
confident that the failure to detect a treatment effect was 
not due to an inadequate sample size. To get a feeling for 
how compatible the data are with the hypothesis of no 
treatment effect, let us examine the 90% confidence inter-
vals for the proportion of “successful” cases (the definition 
of success varied with the study) for all 71 trials. Figure 7-3 
shows these confidence intervals.

All the confidence intervals include zero, so we cannot 
rule out the possibility that the treatments had no effect. 
Note, however, that some of the trials are also compatible 
with the possibility that the treatments produced siz-
able improvements in the success rate. Remember that 
while we can be 90% confident that the true change in 
proportion of successes lies in the interval, it could be any-
where. Does this prove that some of these treatments 
improved clinical outcome? No. The important point is 
that the confidence with which we can assert that there was 
no treatment effect is often the same as the confidence with 
which we can assert that the treatment produced a sizable 
improvement. While the size and location of the confi-
dence interval cannot be used as part of a formal statistical 
argument to prove that the treatment had an effect, it cer-
tainly can help you look for trends in the data.

Meta-Analysis
While the ideal solution to avoiding the problem we have 
been discussing would be to do large, well-powered studies 

*This value can be obtained from a t  table, for example Table 6-2, by taking 
the value of t corresponding to an infinite number of degrees of freedom.

†To include the Yates correction, widen the upper and lower bounds for 
the confidence interval by ½ (1/n bag + 1/ntrad).
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FIGURE 7-3. The 90% confidence intervals 
for 71 negative clinical trials. Since all the 
intervals contain zero, there is not sufficient 
evidence that the success rate is different 
for the treatment and control groups. 
Nevertheless, the data are also compatible 
with the treatment producing a substantial 
improvement in success rate in many of the 
trials. While this study was done in 1978, 
based on clinical trials conducted before 
then, the problem of drawing negative 
conclusions based on underpowered clinical 
trials persists in the 21st century. (From  
Fig. 2 of Freiman JA, Chalmers TC, Smith H 
Jr, Keubler RR. The importance of beta, the 
type II error and sample size in the design 
and interpretation of the randomized control 
trial: survey of 71 “negative” trials.  
N Engl J Med. 1978;299:690–694.)

that would yield estimates of the size of the effect that was 
studied along with a narrow confidence interval, the 
unfortunate fact remains that doing so is not always pos-
sible, either because of practical limitations (such as not 
being able to recruit enough subjects at the institution 
doing the study) or financial limitations. Fortunately, there 
is an approach that permits you to combine the results of 
several similar studies to obtain a single estimate of the 
effect that integrates all the available information.

This approach, known as meta-analysis, is essentially a 
procedure for pooling the results of the individual studies 
as if they were one much larger study.* Because the effec-

*The calculations involved in — and limitations of — meta-analysis are 
beyond the scope of this book. For a discussion of how to conduct a meta-
analysis, see Petitti DB. Meta-Analysis, Decision Analysis, and Cost-effec-
tiveness Analysis: Methods for Quantitative Synthesis in Medicine, 2nd ed. 
New York: Oxford University Press; 2000 or Sutton AJ, Abrams KR, Jones 
DR, Sheldon TA, Song F. Methods for Meta-Analysis in Medical Research.  
West Sussex, England: John Wiley & Sons; 2000.

tive sample size is increased by combining all the stud-
ies, the associated confidence interval is narrower and 
the power of the combined analysis is increased. These 
two effects create a situation in which you can be more 
confident of both positive and negative conclusions 
than is possible when considering each individual study 
separately.

Figure 7-4 shows the results of 29 different studies of 
the relative risk of developing heart disease associated 
with being regularly exposed to secondhand tobacco 
smoke (defined as a nonsmoker living or working with a 
smoker) compared with people not exposed. Each line on 
the top part of Figure 7-4 represents the results of one of 
the studies. The points represent the observed risk in each 
study and the lines span the 95% confidence interval asso-
ciated with each study. Not surprisingly, there is variability 
in the estimates of the effect sizes from study to study 
(because of the random sampling process inherent  
in making estimates from any sample). Several of the 
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FIGURE 7-4. A meta-analysis of the 29 studies of the relative risk of developing heart disease 
when exposed to secondhand smoke yields a single combined estimate of the risk with a much 
narrower 95% confidence interval (bottom of figure) than any of the individual studies (above the 
combined estimate). This more precise estimate of the risk results from the fact that the combined 
risk estimate uses all the information from the 29 individual studies and so has a much larger 
effective sample size than any of the individual studies. (This figure is based on information from 
Barnoya J, Glantz S. Cardiovascular effects of secondhand smoke: nearly as large as smoking. 
Circulation. 2005;111:2684–2698. For the complete analysis, see the source article.) 

confidence intervals exclude a relative risk of 1.0, meaning 
that those studies found a statistically significant elevation 
in heart disease risk associated with secondhand smoke 
exposure. At the same time, several of the studies yielded 
confidence intervals including 1.0, meaning that you 
could not conclude that secondhand smoke increased the 
risk of heart disease based on those individual studies 
taken alone. Note also that many of the studies had wide 
confidence intervals associated with them, because of 
small sample sizes.

The estimate at the bottom of Figure 7-4 shows the 
results of combining all the individual studies with a meta-

analysis. While only some of the 29 individual studies of 
the risk of heart disease associated with breathing second-
hand smoke were large enough to reach conventional sta-
tistical significance (at the .05 level), the combined 
estimate of a relative risk of 1.31 and the narrow confi-
dence interval (from 1.21 to 1.41) means that we can have 
a high level of confidence in concluding that there is an 
increased risk of heart disease in people regularly exposed 
to secondhand smoke. Because this estimate is based on all 
the data from all 18 studies, the effective sample size is 
substantially greater than any of the individual studies, 
which is the reason that the 95% confidence interval for 
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the combined estimate of the effect size is so much nar-
rower than for the individual studies.

While not perfect, meta-analysis has become an impor-
tant tool for combining information from several related 
studies and dealing with the problem that individual stud-
ies lack adequate power to provide high confidence in 
drawing negative conclusions.

  �CONFIDENCE INTERVAL FOR RATES 
AND PROPORTIONS

It is possible to use the normal distribution to compute 
approximate confidence intervals for proportions from 
observations, so long as the sample size is large enough to 
make the approximation reasonably accurate.* When it is not 
possible to use this approximation, we will compute the exact 
confidence intervals based on the binomial distribution. 
While we will not go into the computational details of this 
procedure, we will present the necessary results in graphical 
form because papers often present results based on small 
numbers of subjects. Examining the confidence intervals as 
opposed to only the observed proportion of patients with a 
given attribute is especially useful in thinking about such 
studies, because a change of a single patient from one group 
to the other often makes a large difference in the observed 
proportion of patients with the attribute of interest.

Just as there was an analogous way to use the t distribu-
tion to relate the difference of means and the confidence 
interval for a single sample mean, it is possible to show 
that if the sample size is large enough,

z = −Observed proportion true proportion

Standarrd error of proportion

In other words,

z
p p

sp

= −ˆ

ˆ

approximately follows the normal distribution (in Table 
6-2). Hence, we can use this equation to define the 

100 (1 - α) percent confidence interval for the true pro-
portion p with

ˆ ˆ
ˆ ˆp z s p p z sp p− < < +α α

Quality of Evidence Used as a Basis for 
Interventions to Improve Hospital �
Antibiotic Prescribing
Despite many efforts to control antibiotic usage and 
promote optimal prescribing, practitioners continue to 
prescribe inappropriately, which contributes not only to 
increased medical costs but also to the development of 
antibiotic-resistant bacteria. The British Society for 
Antimicrobial Chemotherapy and Hospital Infection 
Society convened a Working Party to address the prob-
lem of antibiotic prescribing in hospitals.† They did an 
exhaustive literature search and located 306 papers deal-
ing with recommendations for antibiotic use. They then 
applied the quality criteria of the Cochrane Collabora-
tion, an international effort that promotes high quality 
systematic reviews of the literature, and found that 91 of 
the papers met the minimum criteria for inclusion in a 
Cochrane review. What is the 95% confidence interval 
for the fraction of articles that met these quality crite-
ria?

The proportion of acceptable articles is ˆ /p = =91 306
.297 so the standard error of the proportion is

sp̂

. ( . )
.= − =297 1 297

306
026

Therefore, the 95% confidence interval for the propor-
tion of acceptable articles is

.297 - 1.960 ? .026 < p < .297 + 1.960 ? .026

	                            246 < p < .348

In other words, based on this sample, we can be 95% 
confident that the true proportion of papers on antibiotic 
prescribing guidelines that met the Cochrane criteria was 
between 25% and 35%.

*As discussed in Chapter 5, np̂ and n p)( ˆ1- must both exceed about 5, 
where p̂ is the proportion of the observed sample having the attribute of 
interest.

†Ramsay C, Brown E, Hartman G, Davey P. Room for improvement: a 
systematic review of the quality of evaluations to improve hospital anti-
biotic prescribing. J Antimicrob Chemother. 2003;52:764–771.
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  �EXACT CONFIDENCE INTERVALS FOR 
RATES AND PROPORTIONS

When the sample size or observed proportion is too small 
for the approximate confidence interval based on the nor-
mal distribution to be reliable, you have to compute the 
confidence interval based on the exact theoretical distri-
bution of a proportion, the binomial distribution.* Since 
results based on small sample sizes with low observed 
rates of events turn up frequently in the medical literature, 
we present the results of computation of confidence inter-
vals using the binomial distribution.

To illustrate how the procedure we followed above can 
fall apart when np̂ is below about 5, we consider an exam-
ple. Suppose a surgeon says that he has done 30 operations 
without a single complication. His observed complication 

rate p̂ is 0/30 = 0% for the 30 specific patients he operated 
on. Impressive as this is, it is unlikely that the surgeon will 
continue operating forever without a complication, so the 
fact that p̂ = 0 probably reflects good luck in the randomly 
selected patients who happened to be operated on during 
the period in question. To obtain a better estimate of p, the 
surgeon’s true complication rate, we will compute the 
95% confidence interval for p.

Let us try to apply our existing procedure. Since p̂ = 0 ,

s
p p

np̂

ˆ ( ˆ) ( )= − = − =1 0 1 0

30
0

and the 95% confidence interval is from zero to zero. This 
result does not make sense. There is no way that a surgeon 
can never have a complication. Obviously, the approxima-
tion breaks down.

Figure 7-5 gives a graphical presentation of the 95% 
confidence intervals for proportions. The upper and lower 
limits are read off the vertical axis using the pair of curves 
corresponding to the size of the sample n used to estimate
p̂ at the point on the horizontal axis corresponding to the 

*The reason we could use the normal distribution here and in Chapter 5 
is that for large enough sample sizes there is little difference between the 
binomial and normal distributions. This result is a consequence of the 
central-limit theorem, discussed in Chapter 2.

FIGURE 7-5. Graphical presentation of 
the exact 95% confidence intervals 
(based on the binomial distribution) for 
the population proportion. You read this 
plot by reading the two limits of the lines 
defined by the sample size at the point 
on the horizontal axis at the proportion of 
the sample with the attribute of interest 
p̂ (Adapted from Clopper CJ, Pearson ES. 
The use of confidence or fiducial limits 
illustrated in the case of the binomial. 
Biometrika. 1934;26:404–413.)
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observed p̂ . For our surgeon, p̂ = 0 and n = 30, so the 95% 
confidence interval for his true complication rate is from 
0 to .12. In other words, we can be 95% confident that his 
true complication rate, based on the 30 cases we happened 
to observe, is somewhere between 0% and 12%.

Now, suppose the surgeon had a single complication. 
Then ˆ / .p = =1 30 0 033 and

sp̂

. ( . )
.= − =033 1 033

30
0326

so the 95% confidence interval for the true complication 
rate, computed using the approximate method, is

.033 - 1.960 ? .0326 < p < .033 + 1.960 ? .0326

                                -.031 < p < .097

Think about this result for a moment. There is no way 
a surgeon can have a negative complication rate.

Figure 7-5 gives the exact confidence interval, from 0 
to .17, or 0% to 17%.* This confidence interval is not too 
different from that computed when there were no compli-
cations, as it should be, since there is little real difference 
between not having any complications and having only 
one complication in such a small sample.

Notice how important sample size is, especially for 
small sample sizes. Had the surgeon been bragging that he 
had a zero complication rate on the basis of only 10 cases, 
the 95% confidence interval for his true complication rate 
would have extended from zero all the way to 31%!

  �CONFIDENCE INTERVALS FOR RELATIVE 
RISK AND ODDS RATIO†

Because the relative risk and odds ratio are ratios, the 
distributions of the values of these statistics are not nor-
mally distributed. It turns out, however, that the 
logarithm of these ratios is normally distributed. There-
fore, we can use approaches similar to those used with 

proportions to the logarithms of the relative risk and 
odds ratio, then invert the results to return to the origi-
nal scale. By convention, statisticians and epidemiolo-
gists use the natural logarithm for these calculations.‡ 
Using the notation in Table 5-14, the natural logarithm 
of the relative risk, ln RR, is normally distributed with 
standard error

s
n n

n

n n

nln RR

TD T

TD

CD C

CD

= +
/ /

Therefore, the 100 (1 - α) percent confidence interval 
for the natural logarithm of the true population ln RRtrue is

ln RR ln RR ln RRln RR true ln RR− < < +z s z sα α

We convert these estimates back to the original units by 
applying the exponential function to the terms in this 
equation to obtain

e e
z s z sln RR

true
ln RRln RR ln RRRR

− +< <α α

Thus, you could test the null hypothesis that the true 
RR = 1, that the treatment (or risk factor) had no effect, by 
computing this confidence interval and seeing if it 
included 1.0.

Likewise, the natural logarithm of the odds ratio, OR, 
is normally distributed. Using the notation in Table 5-15, 
the standard error is

s
n n n nln OR

ED EN UD UN

= + + +1 1 1 1

and the 100(1 - α) percent confidence interval for the true 
odds ratio is

e e
z s z sln OR

true

ln ORln OR ln OROR
− +

< <α α

This confidence interval can also be used to test the 
null hypothesis that the true OR = 1, that exposure to the 
risk factor is not associated with an increase in the odds of 
having the disease.

*When there are no “failures” observed, the approximate upper end of 
the 95% confidence interval for the true failure rate is approximately 3/n, 
where n is the sample size. For a more extensive discussion of interpreting 
results when there are no “failures,” see Hanley JA, Lippman-Hand A. If 
nothing goes wrong, is everything all right? interpreting zero numerators. 
JAMA. 1983;249:1743–1745.
†If time is limited, this section can be skipped without any loss of conti-
nuity.

‡The natural logarithm has the base e = 2.71828 . . . rather than 10, which 
is the base of the common logarithm. Because e is the base, the natural 
logarithm and exponential functions are inverses, that is, eln x = x and ln 
ex = x.
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Effect of Counseling on Filing Advance 
Directives for End of Life Care among 
Homeless People
In Chapter 5 we rejected the null hypothesis that homeless 
people provided with in-person counseling about end-of-
life care filed advance directives at the same rate as people 
who were simply give written materials (Table 5-1). In that 
study, 38% (55 out of 145) of the people receiving in-per-
son counseling filed advance directives and 13% (15 out 
of 117) of the people receiving written materials filed 
advanced directives. As also presented, the fact that this 
study was a prospective randomized clinical trial, we 
could compute a relative risk from these data,

RR
p

p
= = =

ˆ

ˆ
.

.
.counsel

written

379

128
2 92

Now we will compute the 95% confidence interval for 
this relative risk to test the null hypothesis that the two 
ways of educating homeless people lead to the same rates 
of filing advance directives.

Using the data in Table 5-1 and the notation in Table 
5-14, n TD = 55, n TN = 90, n CD = 15, and n CN = 102, so n T = 
n TD + n TN = 55 + 90 = 145 and n D = n CD + n CN = 15 + 102 = 
117 and the standard error of ln RR is

s RRln =
−

+
−

=
1

55

145
55

1
15

117
15

263.

To estimate the 95% confidence interval, we note that 
z.05 = 1.960 and compute

e eln 2.92 1.960 263 ln 2.92+1.960 2.63RR− ⋅ ⋅< <. .

. .e RR e556 1 587

1

< <

.. .74 4 89< <RR

Hence, we can be 95% confident that the true relative 
risk of homeless people filing advance directives if they 
receive in-person counseling compared to receiving writ-
ten instructions is between 1.74 and 4.89. Because this 
range does not include 1 (the same probabilities of filing 
an advance directive for both treatment groups), we con-
clude that in-person counseling significantly increases the 
likelihood that a homeless person will file an advance 
directive if he or she receives in-person counseling. 

Box 7-2 shows that the 95% confidence interval for 
the relative risk of death for extremely low birth weight 

From the data in Table 5-3, 7 of 70 infants kept warm 
(treated) with polyethylene bags died as did 9 of 70 kept 
warm using traditional methods. Therefore, nTD = 7 out 
of nT = 70 and nCD = 9 out of nT = 70, so

RR

n
n
n
n

= = = =

TD

CD

C

T

7
70
9

70

100
129

775
.
.

.

	T he fact that the relative risk is below 1 indicates 
that the death rate is lower in the polyethylene  
bag-treated group that the traditional treatment group. 
	T he standard error of ln RR is

s

n
n

n

n
n

nRRIn

TD

T

TD

CD

C

CD

=
−

+
−

=
−

+
−

=

1 1

1
7

70
7

1
9

70
9

..475

	T o estimate the 95% confidence interval, we note 
that z.05 = 1.960 and compute

e RR eIn .775 In .775+1.96 475< <− × ×1 96 475. . .

ee RR e

RR

−1 186 676

305

. .

.

< <

< < 1.96

	 Because the 95% confidence interval includes 
1 — equal risks of death for both treatments — we do 
not reject the null hypothesis of no difference between 
the two treatments.

Box 7-2 • Relative Risk of Death in Extreme 
Low Birth Weight Infants for Different Warming 
Techniques

infants kept warm with polyethylene bags is .305 < RR < 
1.96. Since this interval straddles 1, we conclude that the 
warming procedure does not significantly affect survival, 
just as we did before. Indeed, testing this null hypothesis 
using a comparison of proportions, contingency table 
and relative risk all yield precisely the same results 
because they are all simply different presentations of the 
same underlying statistical test.
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Passive Smoking and Breast Cancer
We can compute the confidence interval for the odds ratio 
of a premenopausal woman who is exposed to second-
hand smoke developing breast cancer using the data in 
Table 5-16. To compute the 95% confidence interval for 
this odds ratio, we note that the observed odds ratio is 
2.91 and, from Table 5-16, nED = 50, nEN = 14, nUD = 43, 
and nUN = 35. Therefore,

s ln OR = + + + =1

50

1

14

1

43

1

35
378.

and, so,

e eln 2.91 1.960
true

ln 2.91+1.960OR− ⋅ ⋅< <378 3. 778

327 1 809. .e e< <OR true

. .1 39 6 10< <OR true

Thus, we can be 95% confident that the true odds ratio 
is somewhere between 1.39 and 6.10. Because the 95% 
confidence interval for the true odds ratio excludes 1, we 
conclude that passive smoking significantly increases the 
odds of breast cancer in premenopausal women.

  �CONFIDENCE INTERVAL FOR 
THE ENTIRE POPULATION*

So far computed intervals that we can have a high degree 
of confidence in will include a population parameter, such 
as µ or p. It is often desirable to determine a confidence 
interval for the population itself, most commonly when 
defining the normal range of some variable. The most 
common approach is to take the range defined by 2 stan-
dard deviations about the sample mean on the grounds 
that this interval contains 95% of the members of a popu-
lation that follows the normal distribution (Fig. 2-5). In 
fact, in carefully worded language Chapter 2 suggested this 
rule. When the sample used to estimate the mean and 
standard deviation is large (more than 100 to 200 mem-
bers), this common rule of thumb is reasonably accurate. 

*Confidence intervals for the population are also called tolerance limits. 
The procedures derived in this section are appropriate for analyzing data 
obtained from a population that is normally distributed. If the popula-
tion follows other distributions, there are alternate procedures for com-
puting confidence intervals for the population.

Unfortunately, many studies are based on much smaller 
samples (of the order of 5 to 20 individuals). With such 
small samples, use of this two standard deviations rule of 
thumb seriously underestimates the range of values likely 
to be included in the population from which the samples 
were drawn.

For example, Figure 2-8 showed the population of the 
heights of all 200 Martians, together with the results of 
three random samples of 10 Martians each. Figure 2-8A 
showed that 95% of all Martians have heights between 31 
and 49 cm. The mean and standard deviation of the heights 
of population of all 200 Martians are 40 and 5 cm, respec-
tively. The three samples illustrated in Figure 2-8 yield esti-
mates of the mean of 41.5, 36, and 40 cm, and of the 
standard deviation of 3.8, 5, and 5 cm, respectively. Sup-
pose we simply compute the range defined by two sample 
standard deviations above and below the sample mean 
with the expectation that this range will include 95% of the 
population. Figure 7-6A shows the results of this computa-
tion for each of the three samples in Figure 2-8. The light 
area defines the range of actual heights that covers 95% of 
the Martians’ heights. Two of the three samples yield inter-
vals that do not include 95% of the population.

This problem arises because both the sample mean and 
standard deviation are only estimates of the population 
mean and standard deviation and so cannot be used inter-
changeably with the population mean and standard devi-
ation when computing the range of population values. To 
see why, consider the sample in Figure 2-8B that yielded 
estimates of the mean and standard deviation of 36 and 5 
cm, respectively. By good fortune, the estimate of the stan-
dard deviation computed from the sample equaled the 
population standard deviation. The estimate of the popu-
lation mean, however, was low. As a result, the interval 2 
standard deviations above and below the sample mean did 
not reach high enough to cover 95% of the entire popula-
tion values. Because of the potential errors in the esti-
mates of the population mean and standard deviation, we 
must be conservative and use a range greater than 2 stan-
dard deviations around the sample mean to be sure of 
including, say, 95% of the entire population. However, as 
the size of the sample used to estimate the mean and stan-
dard deviation increases, the certainty with which we can 
use these estimates to compute the range spanned by the 
entire population increases, so we do not have to be as 
conservative (i.e., take fewer multiples of the sample stan-
dard deviation) when computing an interval that contains 
a specified proportion of the population members.
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A

B

FIGURE 7-6. (A) The range defined by the 
sample mean ±2 standard deviations for 
the three samples of 10 Martians each 
shown in Figure 2-8. Two of the three 
resulting ranges do not cover the entire 
range that includes 95% of the population 
members (indicated by the white area). (B) 
The 95% confidence intervals for the 
population, computed as the sample mean 
± K.05 times the sample standard deviation 
covers the actual range that includes 95% 
of the actual population; 95% of all such 
intervals will cover 95% of the actual 
population range.

Specifying the confidence interval for the entire popu-
lation is more involved than specifying the confidence 
intervals we have discussed so far because you must specify 
both the fraction of the population if you wish the interval 
to cover and the confidence you wish to have that any given 
interval will cover it. The size of the interval depends on 
these two things and the size of the sample used to esti-
mate the mean and standard deviation. The 100 (1 - α) 
percent confidence interval for 100f percent of the popu-
lation is

X K s X X K s− < < +α α

in which X and s are the sample mean and standard devi-
ation and Kα is the number of sample standard deviations 

*For a derivation of Kα that clearly shows how it is related to the confi-
dence limits for the mean and standard deviation, see Lewis AE. Toler-
ance limits and indices of discrimination. Biostatistics. New York: 
Reinhold; 1966:chap 12.

FIGURE 7-7. K.05 depends on the size of 
the sample n used to estimate the mean 
and standard deviation and the fraction f 
of the population you want the interval to 
include.

about the sample mean needed to cover the desired part 
of the population. Figure 7-7 shows K.05 as a function of 
sample size for various values of f. It plays a role similar to 
tα or zα .

Kα is larger than tα (which is larger than zα ) because it 
accounts for uncertainty in the estimates of both the mean 
and standard deviation, rather than the mean alone.*

Notice that Kα can be much larger than 2 for sample 
sizes in the range of 5 to 25, which are common in 
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biomedical research. Thus, simply taking 2 standard devi-
ations about the mean may substantially underestimate 
the range of the population from which the samples were 
drawn. Figure 7-6B shows the 95% confidence interval for 
95% of the population of Martians’ heights based on the 
three samples of 10 Martians each shown in Figure 2-8. All 
three of the intervals include 95% of the population.

As Chapter 2 discussed, many people confuse the stan-
dard error of the mean with the standard deviation and 
consider the range defined by “sample mean ±2 standard 
errors of the mean” to encompass about 95% of the popu-
lation. This error leads them to seriously underestimate 
the possible range of values in the population from which 
the sample was drawn. We have seen that, for the relatively 
small sample sizes common in biomedical research, apply-
ing the 2 standard deviations rule may underestimate the 
range of values in the underlying population as well.

  PROBLEMS

7-1 Find the 90% and 95% confidence intervals for the 
mean levels of polychlorinated biphenyl (PCB) levels in 
Problem 2-3.

7-2 Find the 95% confidence interval for the difference in 
mean adenosine triphosphate (ATP) production per gram 
in the two groups of children in Problem 3-1. Based on 
this confidence interval is the difference significant with  
P < .05?

7-3 Find the 95% confidence intervals for the proportions 
of adverse outcomes as well as the 95% confidence interval 
for the difference in rates of adverse outcomes in Prob-
lem 5-1. Compare this result with the hypothesis test in 
Problem 5-1.

7-4 Find the 95% confidence intervals for the mean differ-
ence in the six minute walk distances for the two test 
groups in Problem 4-3. Compare this result with the 
hypothesis test in Problem 4-3.

7-5 Find the 95% confidence intervals for the percentages 
of articles with favorable results in the two classes of stud-
ies in Problem 5-6.

7-6 Use the data in Problem 2-4 to find the 95% confi-
dence interval for 90% and 95% of the population of PCB 
concentrations in Japanese adults. Plot these intervals 
together with the observations.

7-7 Rework Problem 5-5 using confidence intervals.

7-8 Rework Problem 5-11 using confidence intervals.

7-9 Rework Problem 5-12 using confidence intervals.

7-10 Rework Problem 5-13 using confidence intervals.

7-11 Rework Problem 5-14 using confidence intervals.
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How to Test for Trends

8

The first statistical problem we posed in this book, in con-
nection with Figure 1-2A, dealt with a drug that was thought 
to be a diuretic, but that experiment cannot be analyzed 
using our existing procedures. In it, we selected different 
people and gave them different doses of the diuretic, then 
measured their urine output. The people who received 
larger doses produced more urine. The statistical question is 
whether the resulting pattern of points relating urine pro-
duction to drug dose provided sufficient evidence to con-
clude that the drug increased urine production in proportion 
to drug dose. This chapter develops the tools for analyzing 
such experiments. We will estimate how much one variable 
increases (or decreases) on the average as another variable 
changes with a regression line and quantifies the strength of 
the association with a correlation coefficient.* 

  MORE ABOUT THE MARTIANS

As in all other statistical procedures, we want to use a sam-
ple drawn at random from a population to make statements 
about the population. Chapters 3 and 4 discussed popula-
tions whose members are normally distributed with mean 
μ and standard deviation σ and used estimates of these 

parameters to design test statistics (such as F and t) that 
permitted us to examine whether or not some discrete treat-
ment was likely to have affected the mean value of a variable 
of interest. Now, we add another parametric procedure, lin-
ear regression, to analyze experiments in which the samples 
were drawn from populations characterized by a mean 
response that varies continuously with the size of the treat-
ment. To understand the nature of this population and the 
associated random samples, we return again to Mars, where 
we can examine the entire population of 200 Martians.

Figure 2-1 showed that the heights of Martians are 
normally distributed with a mean of 40 cm and a standard 
deviation of 5 cm. In addition to measuring the heights of 
each Martian, let us also weigh each one. Figure 8-1 shows 
a plot in which each point represents the height x and 
weight y of one Martian. Since we have observed the entire 
population, there is no question that tall Martians tend to 
be heavier than short Martians.

There are a number of things we can conclude about 
the heights and weights of Martians as well as the relation-
ship between these two variables. As noted in Chapter 2, 
the heights are normally distributed with mean μ = 40 cm 
and standard deviation σ = 5 cm. The weights are also 
normally distributed with mean μ = 12 g and standard 
deviation σ = 2.5 g. The most striking feature of Figure 
8-1, however, is that the mean weight of Martians at each 
height increases as height increases.

For example, the Martians who are 32 cm tall weigh 
7.1, 7.9, 8.3, and 8.8 g, so the mean weight of Martians 

*Simple linear regression is a special case of the more general method of 
multiple regression in which case there are multiple independent variables. 
For a discussion of multiple regression and related procedures written in 
the same style as this book, see Glantz SA, Slinker BK. Primer of Applied 
Regression and Analysis of Variance, 2nd ed. New York: McGraw-Hill; 2001.
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HEIGHT (x ), cm

α = –8 g
β = 0.5 g/cm
σy .x = 1 g
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FIGURE 8-1. The relationship between 
height and weight in the population of 
200 Martians, with each Martian 
represented by a circle. The weights at 
any given height follow a normal 
distribution. In addition, the mean 
weight of Martians at any given height 
increases linearly with height, and the 
variability in weight at any given height  
is the same regardless of height. A 
population must have these 
characteristics to be suitable for linear 
regression or correlation analysis.

who are 32 cm tall is 8 g. The eight Martians who are 
46 cm tall weigh 13.7, 14.5, 14.8, 15.0, 15.1, 15.2, 15.3, 
and 15.8 g, so the mean weight of Martians who are 46 
cm tall is 15 g. Figure 8-2 shows that the mean weight of 
Martians at each height increases linearly as height 
increases.

This line does not make it possible, however, to predict 
the weight of an individual Martian if you know his or her 
height. Why not? There is variability in weights among 
Martians at each height. Figure 8-1 reveals that standard 
deviation of weights of Martians with any given height is 
about 1 g. We need to distinguish this standard deviation 
from the standard deviation of weights of all Martians 
computed without regard for the fact that mean weight var-
ies with height.

The Population Parameters
Now, let us define some new terms and symbols so that we 
can generalize from Martians to other populations with 
similar characteristics. Since we are considering how 
weight varies with height, call height the independent vari-
able x and weight the dependent variable y. In some 
instances including the example at hand, we can only 
observe the independent variable and use it to predict the 
expected mean value of the dependent variable. (There is 
variability in the dependent variable at each value of the 
independent variable). In other cases, including con-
trolled experiments, it is possible to manipulate the inde-
pendent variable to control, with some uncertainty, the 
value of the dependent variable. In the first case, it is only 
possible to identify an association between the two 
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µy .x = α + βx
µy .x = –8g + (0.5g/cm)x

FIGURE 8-2. The line of means for the 
population of Martians in Figure 8-1.

variables, whereas in the second case it is possible to con-
clude that there is a causal link.*

For any given value of the independent variable x, it is 
possible to compute the value of the mean of all values of 
the dependent variable corresponding to that value of x. 
We denote this mean μy·x to indicate that it is the mean of 
all the values of y in the population at a given value of x. 
These means fall along a straight line given by

µ α βy x x⋅ = +

in which α is the intercept and β is the slope† of the line of 
means. For example, Figure 8-2 shows that, on the average, 

*In an observational study, statistical analysis alone only permits identi-
fication of an association. In order to identify a causal relationship, one 
generally requires independent evidence to explain the biological (or 
other) mechanisms that give rise to the observed association. For exam-
ple, the fact that several epidemiological studies demonstrated an asso-
ciation between passive smoking and heart disease combined with 
laboratory studies showing short-term effects of secondhand smoke and 
secondhand smoke constituents on the heart, led to the conclusion that 
passive smoking causes heart disease. For details on how a variety of such 
evidence is combined to use observational studies as part of the case for 
a causal relationship, see Glantz SA, Parmley WW. Passive smoking and 
heart disease: epidemiology, physiology, and biochemistry. Circulation. 
1991;83:1–12 and Barnoya J, Glantz S. Cardiovascular effects of second-
hand smoke: nearly as large as smoking. Circulation 2005;111:2684–2698.

†It is, unfortunately, statistical convention to use α and β in this way even 
though the same two Greek letters also denote the size of the Type I and 
Type II errors in hypothesis testing. The meaning of α should be clear from 
the context. β always refers to the slope of the line of means in this chapter.



146 Chap t e r  8

the average weight of Martians increases by 0.5 g for every 
1 cm increase in height, so the slope β of the μy·x versus x 
line is 0.5 g/cm. The intercept α of this line is –8 g. Hence,

µy x x⋅ = − +8 0 5g g/cm( . )

There is variability about the line of means. For any 
given value of the independent variable x, the values of y for 
the population are normally distributed with mean μy·x and 
standard deviation σy·x . This notation indicates that σy·x is 
the standard deviation of weights (y) computed after allow-
ing for the fact that mean weight varies with height (x). As 
noted above, the residual variation about the line of means 
for our Martians is 1 g; σy·x =1 g. The amount of this vari-
ability is an important factor in determining how useful the 

line of means is for predicting the value of the dependent 
variable, for example, weight, when you know the value of 
the independent variable, for example, height. The methods 
we develop below require that this standard deviation be the 
same for all values of x. In other words, the variability of 
the dependent variable about the line of means is the same 
regardless of the value of the independent variable.

In summary, we will be analyzing the results of experi-
ments in which the observations were drawn from popu-
lations with these characteristics:

•	 The mean of the population of the dependent variable 
at a given value of the independent variable increases 
(or decreases) linearly as the independent variable 
increases.
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FIGURE 8-3. A random sample of 10 
Martians, showing (A) the members of 
the population that were selected 
together with (B) the sample as it 
appears to the investigator. (continued)
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•	 For any given value of the independent variable, the pos-
sible values of the dependent variable are distributed 
normally.

•	 The standard deviation of population of the dependent 
variable about its mean at any given value of the inde-
pendent variable is the same for all values of the inde-
pendent variable.

The parameters of this population are α and β, which 
define the line of means, the dependent-variable popula-
tion mean at each value of the independent variable, and 
σy·x , which defines the variability about the line of means. 

Now let us turn our attention to the problem of esti-
mating these parameters from samples drawn at random 
from such populations.

  �HOW TO ESTIMATE THE TREND 
FROM A SAMPLE

Since we observed the entire population of Mars there 
was no uncertainty how weight varied with height. This 
situation contrasts with real problems, in which we can-
not observe all members of a population and must infer 
things about it from a limited sample which we hope is 
representative. To understand the information that such 
samples contain, let us consider a sample of 10 indi-
viduals selected at random from the population of 200 
Martians. Figure 8-3A shows the members of the popu-
lation that happened to be selected; Figure 8-3B shows 
what an investigator or reader would see. What do the 
data in Figure 8-3B allow you to say about the underlying 
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FIGURE 8-3. (Continued) 
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population? How certain can you be about the resulting 
statements?

Simply looking at Figure 8-3B reveals that weight 
increases as height increases among the 10 specific indi-
viduals in this sample. The real question of interest, 
however, is: Does weight vary with height in the popula-
tion the sample came from? After all, there is always a 
chance that we could draw an unrepresentative sample, just 
as in Figure 1-2. Before we can test the hypothesis that the 
apparent trend in the data is due to chance rather than a 
true trend in the population, we need to estimate the 
population trend from the sample. This task boils down 
to estimating the intercept α and slope β of the line of 
means.

The Best Straight Line through the Data
We will estimate the two population parameters α and β 
with the intercept and slope, a and b, of a straight line 
placed through the sample points. Figure 8-4 shows the 
same sample as Figure 8-3B with four proposed lines, 
labeled I, II, III and IV. Line I is obviously not appropriate; 
it does not even pass through the data. Line II passes 
through the data but has a much steeper slope than the 
data suggest is really the case. Lines III and IV seem more 
reasonable; they both pass along the cloud defined by the 
data points. Which one is best?

To select the best line and so get our estimates a and b of 
α and β, we need to define precisely what “best” means. To 
arrive at such a definition, first think about why line II seems 
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FIGURE 8-4. Four different possible 
lines to estimate the line of means from 
the sample in Figure 8-3. Lines I and II 
are unlikely candidates because they fall 
so far from most of the observations. 
Lines III and IV are more promising.
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better than line I and line III seems better than line II. The 
“better” a straight line is, the closer it comes to all the points 
taken as a group. In other words, we want to select the 
line that minimizes the total variability between the data and 
the line. The farther any one point is from the line, the more 
the line varies from the data, so let us select the line that leads 
to the smallest total variability between the observed values 
and the values predicted from the straight line.

The problem becomes one of defining a measure of 
variability then selecting values of a and b to minimize this 
quantity. Recall that we quantified variability in a popula-
tion with the variance (or standard deviation) by comput-
ing the sum of the squared deviations from the mean and 
then divided by the sample size, n, minus 1. Now we will use 
the same idea and use sum of the squared differences between 
the observed values of the dependent variable and the value on 
the line at the same value of the independent variable as our 
measure of how much any given line varies from the data. 
We square the deviations so that positive and negative devi-
ations contribute equally. Figure 8-5 shows the deviations 
associated with lines III and IV in Figure 8-4. The sum of 
squared deviations is smaller for line IV than line III, so it is 
the better line. In fact, it is possible to prove mathematically 
that line IV is the one with the smallest sum of squared 
deviations between the observations and the line,* making 
it the “best” line. For this reason, this procedure is often 
called the method of least squares or least-squares regression.

The resulting line is called the regression line of y on x 
(in this case, the regression line of weight on height). Its 
equation is

ŷ a bx= +

ŷ denotes the value of y on the regression for a given value 
of x. This notation distinguishes it from the observed value 
of the dependent variable Y. The intercept a is given by

a
Y X X XY

n X X
= ∑ ∑ − ∑ ∑

∑ − ∑
( )( ) ( )( )

( ) ( )

2

2 2

and the slope is given by

b
n XY X Y

n X X
= ∑ − ∑ ∑

∑ − ∑
( ) ( )( )

( ) ( )2 2

in which X and Y are the coordinates of the n points in the 
sample.†

Table 8-1 shows these computations for the sample of 
10 points in Figure 8-3B. From this table, n = 10, ΣX = 369 
cm, ΣY = 103.8 g, ΣX 2 = 13,841 cm2, and ΣXY = 3930.1 
g ⋅ cm. Substitute these values into the equations for the 
intercept and slope of the regression line to find

a = − ⋅( . )( , ) ( )( .103 8 13 841 369 3930 12g cm cm g cmm

cm cm

g

)

( , ) ( )

.

10 13 841 369

6 0

2 2−
= −

*For this proof and a derivation of the formulas for the slope and inter-
cept of this line, see Glantz SA, Slinker BK. Primer of Applied Regression 
and Analysis of Variance, 2 ed. New York: McGraw-Hill; 2001, 19.

†The calculations can be simplified by computing b first, then finding a 
from a Y bX ,= − in which X and Y are the means of all observations of 
the independent and dependent variables, respectively.

  TABLE 8-1. Computation of Regression Line in Figure 8-5B

Observed Height X (cm) Observed Weight Y (g) X2 (cm2) X Y (g · cm)

31 7.8 961 241.8
32 8.3 1,024 265.6
33 7.6 1,089 250.8
34 9.1 1,156 309.4
35 9.6 1,225 336.0
35 9.8 1,225 343.0
40 11.8 1,600 472.0
41 12.1 1,681 496.1
42 14.7 1,764 617.4
46 13.0 2,116 598.0

369 103.8 13,841 3,930.1
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FIGURE 8-5. Lines III (A) and IV (B) in 
Figure 8-4, together with the deviations 
between the lines and the observations. 
Line IV is associated with the smallest 
sum of squared deviations between the 
regression line and the observed values of 
the dependent variable. The vertical lines 
indicate the deviations. The black line is 
the line of means for the population of 
Martians in Figure 8-1. The regression line 
approximates the line of means but does 
not precisely coincide with it. Line III  
is associated with larger deviations than 
line IV.

and

b = ⋅ −10 3930 1 369 103 8

10 13 8

( . ) ( ) ( . )

( ,

g cm cm g

441 369
0 44

2 2cm cm
g/cm

) ( )
.

−
=

Line IV in Figures 8-4 and 8-5B is this regression line.

ˆ . ( . )y x= − +6 0 0 44g g/cm

These two values are estimates of the population 
parameters, α = –8 g and β = 0.5 g/cm, the intercept and 
slope of the line of means. The light line in Figure 8-5B 
shows the line of means.

Variability about the Regression Line
We have the regression line to estimate the line of means, 
but we still need to estimate the variability of population 

members about the line of means, σy·x . We estimate this 
parameter by computing the square root of the “average” 
squared deviation of the data about the regression line

s
Y y

n

Y a bX

ny x.
( ˆ) [ ( )]= ∑ −

−
= ∑ − +

−

2 2

2 2

where a + bX is the value ŷ on the regression line corre-
sponding to the observation at X; Y is the actual observed 
value of y ; Y − (a + bX) is the amount that the observa-
tion deviates about the regression line and Σ denotes the 
sum, over all the data points, of the squares of these 
deviations [Y − (a + bX)]2. We divide by n − 2 rather than 
n for reasons analogous to dividing by n − 1 when com-
puting the sample standard deviation as an estimate of 
the population standard deviation. Since the sample will 
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LINE OF MEANS µy .x = α + βx
µ = –8.0 g
β = 0.50 g/cm

REGRESSION y = a + bx
a = –6.0 g
b = 0.44 g/cm

FIGURE 8-5. (Continued)

not show as much variability as the population, we  
need to decrease the denominator when computing the 
“average” squared deviation from the line to compensate 
for this tendency to underestimate the population vari-
ability.

sy·x is called the standard error of the estimate. It is related 
to the standard deviations of the dependent and indepen-
dent variables and the slope of the regression line accord-
ing to

s
n

n
s b sy x Y X. ( )= −

−
−1

2
2 2 2

where sY and sX are the standard deviations of the depen-
dent and independent variables, respectively.

For the sample shown in Figure 8-3B (and Table 8-1), 
sX = 5.0 cm and sY = 2.4 g, so

sy x. [ . . ( . )] .= − =9

8
2 4 0 44 5 0 1 022 2 2 g

This number is an estimate of the actual variability 
about the line of means, σy·x = 1 g.

Standard Errors of the Regression Coefficients
Just as the sample mean is only an estimate of the true 
population mean, the slope and intercept of the regression 
line are only estimates of the slope and intercept of the 
line of means in the population. In addition, just as differ-
ent samples yield different estimates for the population 
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mean, different samples will yield different regression 
lines. After all, there is nothing special about the sample in 
Figure 8-3. Figure 8-6A shows another sample of 10 indi-
viduals drawn at random from the population of all 
Martians. Figure 8-6B shows what you would see. Like the 
sample in Figure 8-3B, the results of this sample also sug-
gest that taller Martians tend to be heavier, but the rela-
tionship looks a little different from that associated with 
our first sample. This sample yields estimates of a = −4.0 
g and b = 0.38 g/cm as estimates of the intercept and slope 
of the line of means.

There is a population of possible values of a and b cor-
responding to all possible samples of a given size drawn 
from the population in Figure 8-1. These distributions of all 
possible values of a and b have means α and β, respectively, 
and standard deviations σa and σb called the standard error 
of the intercept and standard error of the slope, respectively.

These standard errors can be used just as we used the 
standard error of the mean and standard error of a pro-
portion. Specifically, we will use them to test hypotheses 
about, and compute confidence intervals for, the regres-
sion coefficients and the regression equation itself.
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FIGURE 8-6. This figure illustrates a 
second random sample of 10 Martians 
drawn from the population in Figure 8-1. 
This sample is associated with a 
different regression line than that 
computed from the first sample, shown 
in Figure 8-5A.
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The standard deviation of the population of all possi-
ble values of the regression line intercept, the standard 
error of the intercept, can be estimated from the sample 
with*

s s
n

X

n s
a y x

X

= +
−

.
( )

1

1

2

2

The standard error of the slope of the regression line is the 
standard deviation of the population of all possible slopes. 
Its estimate is

s
n

s

sb
y x

X

=
−

1

1

.

From the data in Figure 8-3B and Table 8-1 it is possi-
ble to compute the standard errors for the slope and inter-
cept as

sa = +
−

=( . )
( . )

( )( . )
.1 02
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LINE OF MEANS
µ = –8.0 g
β = 0.50 g/cm

REGRESSION LINE
a = –4.0 g
b = 0.38 g/cm

FIGURE 8-6. (Continued)

*For a derivation of these formulas, see Neter J, Kutner MH, Nachtsheim 
CJ, Wasserman W. Inferences in regression analysis. Applied Linear 
Statistical Models: Regression, Analysis of Variance, and Experimental 
Designs. Boston: WCB McGraw-Hill; 1996:chap 2.



154 Chap t e r  8

and

sb =
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Like the sample mean, both a and b are computed from 
sums of the observations. Like the distributions of all pos-
sible values of the sample mean, the distributions of all 
possible values of a and b tend to be normally distributed. 
(This result is another consequence of the central-limit 
theorem.) The specific values of a and b associated with 
the regression line are then randomly selected from nor-
mally distributed populations. Therefore, these standard 
errors can be used to compute confidence intervals and 
test hypotheses about the intercept and slope of the line of 
means using the t distribution, just as we did for the sam-
ple mean in Chapter 7.

How Convincing Is the Trend?
There are many hypotheses we can test about regression 
lines, but the most common and important one is that the 
slope of the line of means is zero. This hypothesis is equiv-
alent to estimating the chance that we would observe a 
trend as strong or stronger than the data show when there 
is actually no relationship between the dependent and 
independent variables. The resulting P value quantifies 
the certainty with which you can reject the hypothesis that 
there is no linear trend relating the two variables.*

Since the population of possible values of the regres-
sion slope is approximately normally distributed, we can 
use the general definition of the t statistic

t = −
Parameter estimate

true value ofpopulatioon parameter

Standard error of parameter esttimate

to test this hypothesis. The equivalent mathematical state-
ment is

t
b

sb

= − β

This equation permits testing the hypothesis that there 
is no trend in the population from which the sample was 

drawn, that is, β = 0, using either of the approaches to 
hypothesis testing developed earlier.

To take a classic hypothesis-testing approach (as in 
Chapter 4), set β to zero in the equation above and 
compute

t
b

sb

=

then compare the resulting value of t with the critical 
value tα defining the 100α percent most extreme values of 
t that would occur if the hypothesis of no trend in the 
population was true.

For example, the data in Figure 8-3B (and Table 8-1) 
yielded b = 0.44 g/cm and sb = 0.064 g/cm from a sample of 
10 points. Hence, t = 0.44/0.064 = 6.875, which exceeds 
5.041, the value of t for P < .001 with ν = 10 − 2 = 8 degrees 
of freedom (from Table 4-1). Hence, it is unlikely that this 
sample was drawn from a population in which there was no 
relationship between the independent and dependent vari-
ables, that is, height and weight. We can use these data to 
assert that as height increases, weight increases (P < .001).

Of course, like all statistical tests of hypotheses, this 
small P value does not guarantee that there is really a trend 
in the population, it just means it is unlikely that there is 
not such a trend. For example, the sample in Figure 1-2A 
is associated with P < .0005. Nevertheless, as Figure 1-2B 
shows, there is no trend in the underlying population.

If we wish to test the hypothesis that there is no trend 
in the population using confidence intervals, we use the 
definition of t above to find the 100 (1 − α) percent confi-
dence interval for the slope of the line of means,

b t s b t sb b− < < +α αβ

We can compute the 95% confidence interval for β by 
substituting the value of t.05 with v = n − 2 = 10 − 2 = 8 
degrees of freedom, 2.306, into this equation together 
with the observed values of b and sb

.44 − 2.306 ? .064 < β < .44 + 2.306 ? .064

	 .29 g /cm < β < .59 gm/cm

Since this interval does not contain zero, we can con-
clude that there is a trend in the population (P < .05).† 

*This restriction is important. As discussed later in this chapter, it is pos-
sible for there to be a strong nonlinear relationship in the observations 
and for the procedures we discuss here to miss it.

†The 99.9% confidence interval does not contain zero either, so we could 
obtain the same P value (.001) as with the first method using confidence 
intervals as with t = b/sb earlier in this session.
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Note that the interval contains the true value of the slope 
of the line of means, β = 0.5 g/cm.

It is likewise possible to test hypotheses about, or com-
pute confidence intervals for, the intercept using the fact 
that

t
a

sa

= −α

is distributed according to the t distribution with ν = n − 2 
degrees of freedom. For example, since sa = 2.6 g the 95% 
confidence interval for the intercept based on the observa-
tions in Figure 8-3B is

a t s t sa a− < < +

− − ⋅ < < − +
. .

. . . . .

05 05

6 0 2 306 2 6 60 2

α α
α 3306 2 6

12 0 5 4

⋅
− < <

.

. .g gα

which includes the true intercept of the line of means, 
α = −8 g.

A number of other useful confidence intervals associ-
ated with regression analysis, such as the confidence inter-
val for the line of means, will be discussed next.

Confidence Interval for the Line of Means
There is uncertainty in the estimates of the slope and 
intercept of the regression line. The standard errors of the 
slope and the intercept, sa and sb, quantify this uncertainty. 
These standard errors are sa = 2.6 g and sb = 0.06 g/cm for 
the regression of height or weight for the Martians in the 
sample in Figure 8-3. Thus, the line of means could lie 
slightly above or below the observed regression line or 
have a slightly different slope. It nevertheless is likely that 
the line of means lies within a band surrounding the 
observed regression line. Figure 8-7A shows this region. It 
is wider at the ends than in the middle because the regres-
sion line must be straight and must go through the point 
defined by the means of the independent and dependent 
variables.
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FIGURE 8-7. (A) The 95% confidence interval for the regression line relating Martian weight or 
height using the data in Figure 8-3. (B) The 95% confidence interval for an additional observation 
of Martian weight at a given height. This is the confidence interval that should be used to 
estimate true weight from height to be 95% confident that the range includes the true weight.
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There is a distribution of possible values for the regres-
sion line at each value of the independent variable x. Since 
these possible values are normally distributed about the 
line of means, it makes sense to talk about the standard 
error of the regression line. (This is another consequence 
of the central-limit theorem.) Unlike the other standard 
errors we have discussed so far, this standard error is not 
constant but depends on the value of the independent 
variable x:

s s
n

x X

n s
y y x

X

ˆ .
( )

( )
= + −

−
1

1

2

2

Since the distribution of possible values of the regres-
sion line is normally distributed, we can compute the 
100 (1 − α) percent confidence interval for the regression 
line with

ˆ ˆˆ ˆy t s y y t sy y− < < +α α

in which tα has v = n − 2 degrees of freedom and ŷ is the 
point on the regression line for each value of x,

ŷ a bx= +

Figure 8-7A shows the 95% confidence interval for the 
line of means. It is wider at the ends than the middle, as it 
should be. Note also that it is much narrower than the 
range of the data because it is the confidence interval for 
the line of means, not the population as a whole.

It is not uncommon for investigators to present the 
confidence interval for the regression line and discuss it as 
though it were the confidence interval for the population. 
This practice is analogous to reporting the standard error 
of the mean instead of the standard deviation to describe 
population variability. For example, Figure 8-7A shows 
that we can be 95% confident that the mean weight of all 
40 cm tall Martians is between 11.0 and 12.5 g. We cannot 
be 95% confident that the weight of any one Martian that 
is 40 cm tall falls in this narrow range.

Confidence Interval for an Observation
To compute a confidence interval for an individual obser-
vation, we must combine the total variability that arises 
from the variation in the underlying population about the 
line of means, estimated with, sy·x , and the variability due 
to uncertainty in the location of the line of means sŷ . 
Since the variance of a sum is the sum of the variances,  

the standard deviation of the predicted value of the obser-
vation will be

s s sY y x ynew = +⋅
2 2

ˆ

We can eliminate sŷ from this equation by replacing it 
with the equation for sŷ in the last section

s s
n

x X

n s
Y y x

X

new = + + −
−

.
( )

( )
1

1

1

2

2

This standard error can be used to define the 100 (1 − α) 
percent confidence interval for an observation according to

ˆ ˆy t s y y t sY Y− < < +α αnew new

Remember that both ŷ and sY new depend on the value 
of the independent variable x.

The two curved lines around the regression line in Fig-
ure 8-7B show the 95% confidence interval for an addi-
tional observation. This band includes both the uncer-
tainty due to random variation in the population and 
variation due to uncertainty in the estimate of the true 
line of means. Notice that most members of the sample 
fall in this band. It quantifies the uncertainty in using 
Martian height to estimate weight, and hence, the uncer-
tainty in the true weight of a Martian of a given height. 
For example, it shows that we can be 95% confident that 
the true weight of a 40 cm tall Martian is between 9.5 and 
14.0 g. This confidence interval describes the precision 
with which it is possible to estimate the true weight. This 
information is much more useful than the fact that there 
is a statistically significant* relationship between the Mar-
tian weight and height (P < .001).

Cell Phone Radiation, Reactive Oxygen 
Species, and DNA Damage in Human Sperm
Motivated by the human and animal studies showing that 
cell phone use was associated with lower sperm motility, 
Geoffry De Luliis and colleagues† conducted an experiment 

*t = b/s b = .44/.064 = 6.875 for the data in Figure 8-3. t.001 for n = 10 − 2 
= 8 degrees of freedom is 5.041.
†De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobil phone radiation in-
duces reactive oxygen species production and DNA damage in human 
spermatoza in vitro. PLoS One. 2010;4(7):e6446. doi:10.1371/journal.
pone.0006446.
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in which they exposed normal human sperm dishes to cell 
phone electromagnetic signals and measured the produc-
tion of intracellular reactive oxygen species (ROS) pro-
duced in cellular mitochondria that can damage DNA as 
well as the amount of DNA damage.

They exposed the sperm (obtained from students with 
no known reproductive problems or infections) to cell 
phone signals of varying strengths for 16 hours and inves-
tigated the relationship between the strength of the signal 
and the level of ROS production and DNA damage. The 
sperm were exposed in petri dishes maintained at a con-
stant 21°C temperature to avoid the problem that the 
higher radiofrequency radiation from stronger cell phone 
signals would heat the sperm more, which would affect 
sperm function. By holding temperature constant, Di 
Luliis and colleagues avoided the effects of this potential 
confounding variable. 

They sought to investigate whether there was a dose-
dependent effect of cell phone exposure on the amount of 
ROS produced by the sperm and the level of DNA damage 
to the sperm.

The independent variable in their study was cell 
phone signal strength, measured at the specific absorption 
rate (SAR), for the cell phone. (SAR is the rate of absorp-
tion of an electromagnetic radiation from a cell phone by 

a model designed to simulate a human head.) The depen-
dent variables were the fraction of sperm that tested 
positive on a MitroSOX red test for ROS. A second ques-
tion is whether there is a relationship between the level 
of ROS and a second dependent variable, the fraction of 
sperm that expressed 8-hydroxy-2′-deoxyguanosine 
(8-OH-dg), a marker for oxidative damage to sperm  
DNA.

Table 8-2 shows the data for this study.
Figure 8-8 shows the relationship between the per-

centage of sperm that tested positive for ROS, R, as a 
function of the SAR, S, together with the results of 
doing a linear regression on these data. Even though 
the slope is significantly different from zero (P < .001), 
the regression line does not provide an accurate 
description of the data, which shows a rapid increase in 
ROS generation at low SAR levels, then flattens out. 
This example illustrates the importance of always looking 
at a plot of the data together with the associated regres-
sion line to ensure that the central assumptions of linear 
regression — that the line of means is a straight line and 
that the residuals are randomly and normally distributed 
around the regression line — are met. In this case, nei-
ther assumption is satisfied so we cannot use linear 
regression to make statements about the relationship 

  �TABLE 8-2. Cell Phone Signal Strength and Fraction of Sperm with Reactive Oxygen Species 
and DNA Damage

Cell-Phone-Specific Absorption Rate, SAR 
(W/kg)

Sperm with Mitochondrial ROS
(%)

Sperm with DNA Damage
(%)

  0.4   8   5
27.5 29 18
  0.0   6   3
  1.0 13   8
  2.8 16 10
10.1 27 15
  2.8 18   5
27.5 30 13
10.1 25 15
  4.3 25   7
  4.3 23   8
  1.0 15   4
  1.0 11   3
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apparent in these data.* Therefore, while this figure seems 
to indicate a strong relationship between the strength of 
the cell phone signal and the level of oxidative damage, we 
cannot make any statistical statements about the confi-
dence we have in making such a statement using linear 
regression.

We are luckier about the relationship between the 
level of ROS and DNA damage (Fig. 8-9) where the 
assumptions of linear regression are satisfied. (Compare 
how well the regression line goes through the data 
compared with how it does not in Fig. 8-8.) Box 8-1 
shows that the regression line has a slope of .505 with a 

standard error of .105 and an intercept of −.796% with 
a standard error of 2.27%. We test whether the slope 
and intercept are significantly different from zero by 
computing t = b/sb = .505/.105 = 4.810 and t = a/sa = 
−.796/2.27 = .351, respectively. We compare these values 
of t associated with the regression with the critical value 
of t that defines the 95% most extreme values of the t 
distribution with n = n − 2 = 13 − 2 = 11 degrees of free-
dom (from Table 4-2), 2.201. Since the t for the slope 
exceeds this value, we reject the null hypothesis of no 
(linear) relationship between sperm ROS level and DNA 
damage and conclude that increased levels of ROS are 
associated with higher levels of DNA damage. (In fact, 
the value of t associated with the slope exceeds 4.437, 
the critical value for P < .001.) In contrast, the t for the 
intercept does not even approach the critical value, so 
we do not reject the null hypothesis that the intercept is 
zero. The overall conclusion from these two tests is that 
the fraction of sperm with DNA damage increases in 
proportion to the fraction of sperm with elevated levels 
of ROS. Therefore, based on this experiment, we can 
conclude with a high level of confidence that higher lev-
els of ROS production in sperm mitochondria cause 
DNA damage (P < .001).
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FIGURE 8-8. The fraction of sperm with positive tests for 
mitochondrial reactive oxygen species increases with the 
intensity of the electromagnetic radiation produced by the 
cell phone, but this increase is not linear, so linear 
regression cannot be used to test hypotheses about the 
relationship between these two variables.

*Examining the relationship between ROS formation damage and SAR 
suggests a saturating exponential,

R R e
S

s= −








∞

−
1

where the two parameters are R∞, the maximum fraction of sperm with 
testing positive for ROS, and s, the exponential rate at which ROS in-
creases. Such a relationship would occur if the rate of sperm becoming 
ROS positive depends on the fraction of sperm that are not yet ROS 
positive. It is possible to fit a nonlinear equation to these data. See Glantz 
S, Slinker B. Nonlinear regression. Primer of Applied Regression and Anal-
ysis of Variance, 2nd ed. New York: McGraw-Hill; 2001:chap 11. 
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FIGURE 8-9. Sperm with higher levels of mitochondrial 
reactive oxygen species have higher levels of DNA damage. 
In contrast to the results in Figure 8-8, the data are 
consistent with the assumptions of linear regression, so we 
can use linear regression to draw conclusions about this 
relationship. 
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The first two columns of the table below present the data from Table 8-2 (last two columns), together with the 
square of the independent variable values and the product of the independent and dependent variables and the 
sums necessary to compute the linear regression.

Calculation of Linear Regression of DNA Damage

        Sperm with  
Mitochondrial ROS (%)

Sperm with DNA  
    Damage (%)

Fit Regression  
       Line Residual Residual2

                 X              Y    X2   X Y          ŷ ( ˆ)Y − y ( ˆ)Y 2− y
8 5 64 40 3.25 1.75 3.07

29 18 841 522 13.86 4.14 17.12
6 3 36 18 2.24 0.76 0.58

13 8 169 104 5.78 2.22 4.95
16 10 256 160 7.29 2.71 7.33
27 15 729 405 12.85 2.15 4.61
18 5 324 90 8.30 −3.30 10.91
30 13 900 390 14.37 −1.37 1.87
25 15 625 375 11.84 3.16 9.98
25 7 625 175 11.84 −4.84 23.43
23 8 529 184 10.83 −2.83 8.01
15 4 225 60 6.79 −2.79 7.76
11 3 121 33 4.76 −1.76 3.11

246 114 5444 2556 102.75

n = 13; X = 246/13 = 18.9%; sX = 8.11%. 

The intercept of the regression line is

a
Y X X XY

n X X
= ∑ ∑ − ∑ ∑

∑ − ∑
= −⋅( ) ( ) ( )( )

( ) ( )

2

2 2

114 5444 2246 2556

13 5444 246
796

2

⋅
⋅ −

= −. %

and the slope is 

b
n XY X Y

n X X
= ∑ − ∑ ∑

∑ − ∑
= −⋅ ⋅( ) ( )( )

( ) ( )2 2

13 2556 246 1114

13 5444 246
505

2⋅ −
= .

Thus, the regression equation is
ˆ ( ) . % .y x x= − +796 518

	W e use the regression equation to compute the predicted value of y for each observed X; for example, for the 
first observation, X = 8, 

ˆ ( ) . % . .y 8 796 505 8 3 25= − + =⋅
and the associated residual is

( yY − = − =ˆ) . . .5 00 3 25 1 75

Box 8-1 • Linear Regression of Fraction of Sperm with ROS as a Function of Cell Phone SAR

(continued)
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Thus, the standard error of the estimate is

s
y

ny x.
( ˆ) .

. %= ∑ −
−

=
−

=Y 2

2
102 75
13 2

3 06

	T he standard deviation of the observed values of the independent value, sX, is 8.11%, so the standard error of 
the intercept and slope are 

s
n

X

n sa
X

= +
−

= +
−

=1

1

1
13

18 9

13 1 8 11
2 27

2

2

2

2( )

.

( ) .
. %

and

s
n

s

sb
y x

X

=
−

=
−

=1

1

1

13 1

3 06
11 8

105
. .

.
.

Box 8-1 • Linear Regression of Fraction of Sperm with ROS as a Function of Cell Phone SAR (Continued)

  �HOW TO COMPARE TWO 
REGRESSION LINES*

The situation often arises in which one wants to compare 
two regression lines. There are actually three possible 
comparisons one might want to make:

•	 Test for a difference in slope (without regard for the 
intercepts).

•	 Test for a difference in intercept (without regard for the 
slopes).

•	 Make an overall test of coincidence, in which we ask if 
the lines are different.

The procedures for comparing two slopes or intercepts 
are a direct extension of the fact that the observed slopes 
and intercepts follow the t distribution. For example, to test 
the hypothesis that two samples were drawn from popula-
tions with the same slope of the line of means, we compute

t = Difference of regression slopes

Standard errror of difference of regression slopes

or, in mathematical terms,

t
b b

sb b

=
−

−

1 2

1 2

where the subscripts 1 and 2 refer to data from the first 
and second regression data samples. This value of t is 
compared to the critical value of the t distribution with 
n = n1 + n2 − 4 degrees of freedom. This test is exactly 
analogous to the definition of the t test to compare two 
sample means.

If the two regressions are based on the same number of 
data points, the standard error of the difference of two 
regression slopes is

s s sb b b b1 2 1 2

2 2
− = +

If there are a different number of points, use the pooled 
estimate of the difference of the slopes. Analogous to the 
pooled estimate of the variance in the t test in Chapter 4, 
compute a pooled estimate of the variation about the 
regression lines as

s
n s n s

n ny x

y x y x

p⋅
⋅ ⋅=

− + −

+ −
2 1

2
2

2

1 2

2 2

4
1 2

( ) ( )

and use this value to compute

s
s

n s

s

n s
b b

y x

x

y x

x

p p

1 2

1 2

2

1
2

2

2
21 1

−
⋅ ⋅

=
−

+
−( ) ( )

*This section deals with more advanced material and can be skipped 
without loss of continuity. It is also possible to test for differences be-
tween three or more regression lines using techniques which are general-
izations of regression and analysis of variance; see Zar JH. Comparing 
simple linear regression equations. Biostatistical Analysis, 4th ed. Upper 
Saddle River, NJ: Prentice-Hall; 1999:chapter 18. For a discussion of how 
to use multiple regression models to compare several regression lines, 
including how to test for parallel shifts between regression lines, see 
Glantz S, Slinker B. Regression with two or more independent variables. 
Primer of Applied Regression and Analysis of Variance, 2nd ed. New York: 
McGraw-Hill; 2001:chap 3.
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Likewise, to compare the intercepts of two regression 
lines, we compute

t
a a

sa a

=
−

−

1 2

1 2

where

s s sa a a a1 2 1 2

2 2
− = +

if there are the same number of points for each regression 
equation, and we use a formula based on the pooled vari-
ance estimate if there are unequal number of points in the 
two regressions.

Overall Test for Coincidence of  
Two Regression Lines
It is also possible to test the null hypothesis that two regres-
sions are coincident, that is, have the same slope and inter-
cept. Recall that we computed the slope and intercept of 
the regression line by selecting the values that minimized 
the total sum of squared differences between the observed 
values of the dependent variable and the value on the line 
at the same value of the independent variable (residuals). 
The square of the standard error of the estimate, sy·x, is the 
estimate of this residual variance around the regression 
line and it is a measure of how closely the regression line 
fits the data. We will use this fact to construct our test by 
examining whether fitting the two sets of data with sepa-
rate regression lines (in which the slopes and intercepts can 
be different) produces smaller residuals than fitting all the 
data with a single regression line (with a single slope and 
intercept).

The specific procedure for testing for coincidence of 
two regression lines is

•	 Fit each set of data with a separate regression line.
•	 Compute the pooled estimate of the variance around 

the two regression lines, sy xp⋅
2 , using the previous equa-

tions. This statistic is a measure of the overall variability 
about the two regression lines, allowing the slopes and 
intercepts of the two lines to be different.

•	 Fit all the data with one regression line, and compute 
the variance around this one “single” regression line,
sy xs⋅

2 . This statistic is a measure of the overall variability 
observed when the data are fit by assuming that they all 
fall along one line of means.

•	 Compute the “improvement” in the fit obtained by fit-
ting the two data sets with separate regression lines 

compared to fitting them with a single regression line using

s
n n s n n s

y x

y x y xs p

⋅
⋅ ⋅

=
+ − − + −

imp

2 1 2
2

1 2
22 4

2

( ) ( )

•	 The numerator in this expression is the reduction in 
the total sum of squared differences between the obser-
vations and regression line that occurs when the two 
lines are allowed to have different slopes and intercepts. 
It can also be computed as

sy x
x p

⋅ =
−

imp

SS SSres res2

2

	 where SSres are the sum of squared residuals about the 
regressions.

•	 Compute the ratio of the improvement in the fit 
obtained when fitting the two sets of data separately 
over fitting all the data with a single line with the 
residual variation about the regression lines when fit-
ting the two lines separately, using the F-test statistic,

F
s

s

y x

y xp

=
⋅

⋅

imp

2

2

•	 Compare the observed value of the F-test statistic with the 
critical values of F for nn = 2 numerator degrees of freedom 
andνd n n= + −1 2 4 denominator degrees of freedom.

If the observed value of F exceeds the critical value of 
F, it means that we obtain a significantly better fit to the 
data (measured by the residual variation about the regres-
sion line) by fitting the two sets of data with separate 
regression lines than we do by fitting all the data with a 
single line. We reject the null hypothesis of a single line of 
means and conclude that the two sets of data were drawn 
from populations with different lines of means.

Relationship between Weakness and Muscle 
Wasting in Rheumatoid Arthritis
Rheumatoid arthritis is a disease in which a person’s joints 
become inflamed so that movement becomes painful, and 
people find it harder to complete mechanical tasks, such as 
holding things. At the same time, as people age, they often 
lose muscle mass. As a result, P. S. Helliwell and S. Jackson* 

*Helliwell PS, Jackson S. Relationship between weakness and muscle 
wasting in rheumatoid arthritis. Ann Rheum Dis. 1994;53:726−728.
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wondered whether the reduction in grip strength noted  
in people who had arthritis was due to the arthritic  
joints or simply a reflection of a reduction in mass of 
muscle.

To investigate this question, they measured the cross-
sectional area (in cm2) of the forearms of a group of nor-
mal people and a group of similar people with arthritis as 
well as the force (in newtons) with which they could grip 
a test device. Figure 8-10 shows the data from such an 
experiment, using different symbols with the two groups 
of people indicated. The question is: Is the relationship 
between muscle cross-sectional area and grip strength dif-
ferent for the normal people (circles) and the people with 
arthritis (triangles)?

We will answer this question by first doing a test for 
overall coincidence of the two regressions. Figure 8-11A 
shows the same data as in Figure 8-10, with separate 
regression equations fit to the two sets of data and 

Table 8-3 presents the results of fitting these two regres-
sion equations. Using the formula presented earlier, the 
pooled estimate of the variance about the two regression 
lines fit separately is

s

n s

pgrip area

normal grip area
2

normal

⋅

⋅

=

−

+
2

2( )

(nn s

n n

arthritis grip area

normal

arthritis
−

+
⋅2 2)

aarthritis −

= − + −
+ −

4

25 2 45 7 25 2 40 5

25 25 4

2 2( ) . ( ) . == 1864 2N

Next, fit all the data to a single regression equation, 
without regard for the group to which each person 
belongs; Figure 8-11B shows this result, with the results of 
fitting the single regression equation as the last column in 
Table 8-3. The total variance of the observations about the 
single regression line is s N

sgrip area⋅ = =2 2 2129 1 16 667( . ) , .

FIGURE 8-10. This plot shows the grip strength as a 
function of muscle cross-sectional area in 25 
normal people and 25 people with arthritis. The 
question is: Are the relationships between these 
two variables the same in both groups of people?

  �TABLE 8-3. Comparison of the Relationship between Grip Strength and Muscle Cross-Sectional Area in 
Normal People and People with Arthritis (See Figs. 8-8 and 8-9)

Normal Arthritis All People

Sample size n 25 25 50
Intercept a (sa), N −7.3 (25.3) 3.3 (22.4) −23.1 (50.5)
Slope b (sb), N/cm2 10.19 (.789) 2.41 (.702) 6.39 (1.579)
Standard error of the estimate sy·x, N 45.7 40.5 129.1
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A

B

FIGURE 8-11. In order to test whether the two 
groups of people (normal subjects and people with 
arthritis) have a similar relationship between muscle 
cross-sectional area and grip strength, we first fit 
the data for the two groups separately (A), then 
together (B). If the null hypothesis that there is no 
difference between the two groups is true, then the 
variation about the regression lines fit separately 
will be approximately the same as the variation 
when the two sets of data are fit separately.

This value is larger than that observed when the two 
curves were fit separately. To estimate the improvement 
(reduction) in variance associated with fitting the two 
lines separately, we compute

s

n n s

grip area

normal arthritis grip

imp⋅

⋅

=

+ −

2

2( ) aarea

normal arthritis grip area

s

p
n n s

2

24

2

− + − ⋅( )

== + − − + −

=

( ) , ( )

,

25 25 2 16 667 25 25 4 1864

2

357 136 2N

Finally, we compare the improvement in the variance 
about the regression line obtained by fitting the two groups 
separately with that obtained by fitting them separately 
(which yields the smallest residual variance) with the F test

F
s

s
p

= = =
⋅

⋅

grip area

grip area

imp

2

2

375 136

1864
19

,
11 597.

This value exceeds 5.10, the critical value of F for P < .01 
with nd = 2 and nd = nnormal + narthritis − 4 = 25 + 25 − 4 = 46 
degrees of freedom, so we conclude that the relationship 
between grip force and cross-sectional area is different for 
normal people and people with arthritis.
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The next question that arises is where the difference 
comes from. Are the intercepts or slopes different? To 
answer this question, we compare the intercepts and 
slopes of the two regression equations. We begin with the 
intercepts. Since the two regressions are based on the same 
number of data points, we can use the results in Table 8-3 
to compute the standard error, the difference in the two 
regression intercepts with

s s sa a a anormal arthritis normal arthritis− = + =2 2 225 3 22 4

33 8

2 2. .

.

+

= N

and

t
a a

sa a

=
−

= −

−

normal arthritis

normal arthritis

( 7.. ) ( . )

.
.

3 3 3

33 8
314

− = −

which does not come near exceeding 2.013 in magnitude, 
the critical value of t for P < .05 for n = nnormal + narthritis − 4 = 
46 degrees of freedom. Therefore, we do not conclude that 
the intercepts of the two lines are significantly different.

A similar analysis comparing the slopes yields t = 7.367, 
so we do conclude that the slopes are different (P < .001). 
Hence the increase in grip force per unit increase in cross-
sectional muscle area is smaller for people with arthritis 
than normal people.

  �CORRELATION AND CORRELATION 
COEFFICIENTS

Linear regression analysis of a sample provides an estimate 
of how, on the average, a dependent variable changes when 
an independent variable changes and an estimate of the 
variability in the dependent variable about the line of 
means. These estimates, together with their standard 
errors, permit computing confidence intervals to show the 
certainty with which you can predict the value of the 
dependent variable for a given value of the independent 
variable. In some experiments, however, two variables are 
measured that change together but neither can be consid-
ered to be the dependent variable. In such experiments, we 
abandon all premise of making a statement about causality 
and simply seek to describe the strength of the association 
between the two variables. The correlation coefficient, a 
number between −1 and +1, is often used to quantify the 
strength of this association. Figure 8-12 shows that the 
tighter the relationship between the two variables, the closer 
the magnitude of r is to 1; the weaker the relationship 

between the two variables, the closer r is to 0. We will 
examine two different correlation coefficients.

The first, called the Pearson product-moment correla-
tion coefficient, quantifies the strength of association 
between two variables that are normally distributed like 
those in Figure 8-1. It, therefore, provides an alternative 
perspective on the same data we analyzed using linear 
regression. When people refer to the correlation coeffi-
cient, they almost always mean the Pearson product-
moment correlation coefficient.

The second, called the Spearman rank correlation coef-
ficient, is used to quantify the strength of a trend between 
two variables that are measured on an ordinal scale. In an 
ordinal scale responses can be graded, but there is no 
arithmetic relationship between the different possible 
responses. For example, Pap smears, the common test for 
cervical cancer, are graded according to this scale: (1) nor-
mal, (2) cervicitis (inflammation, usually due to infec-
tion), (3) mild-to-moderate dysplasia (abnormal but 
noncancerous cells), (4) moderate-to-severe dysplasia, 
and (5) cancerous cells present. In this case, a rating of 4 
denotes a more serious condition than a rating of 2, but it 
is not necessarily twice as serious. This situation contrasts 
with observations quantified on an interval scale where 
there are arithmetic relationships between the responses. 
For example, a Martian who weighs 16 g is twice as heavy 
as one who weighs 8 g. Ordinal scales often appear in 
clinical practice when conditions are ranked according to 
seriousness.

The Pearson Product-Moment  
Correlation Coefficient
The problem of describing the strength of association 
between two variables is closely related to the linear 
regression problem, so why not simply arbitrarily make 
one variable dependent on the other? Figure 8-13 shows 
that reversing the roles of the two variables when comput-
ing the regression line results in different regression lines. 
This situation arises because in the process of computing the 
slope and intercept of the regression line we minimize the 
sum of squared deviations between the regression line and 
the observed values of the dependent variable. If we reverse 
the roles of the two variables, there is a different dependent 
variable, so different values of the regression line intercept 
and slope minimize the sum of squared deviations. We 
need a measure of association that does not require arbi-
trarily deciding that one of the variables is the independent 
variable.
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r = 0.0r = 0.8

r = –1.0r = 1.0 BA

DC

FIGURE 8-12. The closer the magnitude 
of the correlation coefficient is to 1, the 
less scatter there is in the relationship 
between the two variables. The closer 
the correlation coefficient is to 0, the 
weaker the relationship between the two 
variables.

The Pearson product-moment correlation coefficient 
r, defined by

r
X X Y Y

X X Y Y
= ∑ − −

∑ − ∑ −

( )( )

( ) ( )2 2

in which the sums are over all the observed (X, Y ) points, 
has this property. Its value does not depend on which vari-
able we call x and y. The magnitude of r describes the 
strength of the association between the two variables, and 
sign of r tells the direction of this association: r = +1 when 
the two variables increase precisely linearly together (Fig. 
8-12A), and r = −1 when one decreases linearly as the 
other increases (Fig. 8-12B). Figure 8-12C also shows the 
more common case of two variables that are correlated, 
though not perfectly. Figure 8-12D shows two variables that 
do not appear to relate to each other at all; r = 0.

Table 8-4 illustrates how to compute the correlation 
coefficient using the sample of 10 points in Figure 8-3B. 
(These are the same data used to illustrate the computa-
tion of the regression line in Table 8-1 and Fig. 8-5B.) 

From Table 8-4, n = 10, X X n= = =Σ / / cm cm,369 10 36 9.  
and	 Y Y n= = =Σ / 103.8/10 g 10.38 g, so Σ( )(X X Y− −
Y X X Y Y) . , ( ) . , ( )= − = − =⋅99 9 224 92 2 2g cm cm andΣ Σ
51 8. .g2 Substitute these numbers into the definition of 
the correlation coefficient to obtain

r = =⋅
⋅

99 9

51 8
0 925

2

.

.
.

g cm

224.9 cm g2

To gain more feeling for the meaning to the magnitude 
of a correlation coefficient, Table 8-5 lists the values of the 
correlation coefficients for the observations in Figures 8-7 
and 8-11.

The Relationship between  
Regression and Correlation
Obviously, it is possible to compute a correlation coefficient 
for any data suitable for linear regression analysis. Indeed, 
the correlation coefficients in Table 8-4 all were computed 
from the same examples we used to illustrate regression 
analysis. In the context of regression analysis, it is possible 



166 Chap t e r  8

HEIGHT (x ), cm

W
E

IG
H

T 
(y

), 
g

FIGURE 8-13. The regression of y on x 
yields a different regression line than 
the regression of x on y for the same 
data. The correlation coefficient is the 
same in either case.

  �TABLE 8-4. Computation of Correlation Coefficient for Sample in Figure 8-3B

Observed 
Height X (cm)

Observed Weight 
Y (g)

( )
(cm)
X X−− ( )

(g)
Y Y−− ( ) ( )

(cm g)
X X Y Y−− −−

⋅
( )

(cm )

2

2
X X−− ( )

(g )

2

2
Y Y−−

31 7.8 −5.9 −2.6 15.2 34.8 6.7
32 8.3 −4.9 −2.1 10.2 24.0 4.3
33 7.6 −3.9 −2.8 10.8 15.2 7.7
34 9.1 −2.9 −1.3 3.7 8.4 1.6
35 9.6 −1.9 −0.8 1.5 3.6 0.3
35 9.8 −1.9 −0.6 1.1 3.6 2.0
40 11.8 3.1 1.4 4.4 9.6 2.0
41 12.1 4.1 1.7 7.1 16.8 3.0
42 14.7 5.1 4.3 22.0 26.0 18.7
46 13.0 9.1 2.6 23.8 82.8 6.9

369 103.8 0.0 0.0 99.9 224.9 51.8
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  �TABLE 8-5. Correlations between Variables in Examples

Figure Variables Correlation Coefficient, r Sample Size, n

8-7 Height and weight of Martians .925 10
8-9A Grip force and muscle cross-sectional area 

in normal people
.938 25

8-9B Area in normal and arthritic people .581 25

to add to the meaning of the correlation coefficient. Recall 
that we selected the regression equation that minimized the 
sum of squared deviations between the points on the 
regression line and the value of the dependent variable at 
each observed value of the independent variable. It can be 
shown that the correlation coefficient also equals

r = −1

Sum of squared deviations
from regressioon line

Sum of squared deviations from mean

where the deviations are all measured for the dependent 
variable.

Let SSres equal the sum of squared deviations (residu-
als) from the regression line and SStot equal the total sum 
of squared deviations from the mean of the dependent 
variable. Then

r = −1
SS

SS
res

tot

When there is no variation in the observations about 
the regression line SSres = 0, the correlation coefficient 
equals 1 (or −1), indicating the dependent variable can be 
predicted with no uncertainty from the independent vari-
able. On the other hand, when the residual variation about 
the regression line is the same as the variation about the 
mean value of the dependent variable, SSres = SStot, there is 
no trend in the data and r = 0. The dependent variable 
cannot be predicted at all from the independent variable.

The square of the correlation coefficient, r2, is known 
as the coefficient of determination. Since, from the preced-
ing equation,

r 2 1= −
SS

SS
res

tot

and SStot is a measure of the total variation in the depen-
dent variable, people say that the coefficient of determina-
tion is the fraction of the total variance in the dependent 
variable “explained” by the regression equation. This is 

rather unfortunate terminology, because the regression 
line does not “explain” anything in the sense of providing 
a mechanistic understanding of the relationship between 
the dependent and independent variables. Nevertheless, 
the coefficient of determination is a good description of 
how clearly a straight line describes the relationship 
between the two variables.

Likewise, the sum of squared deviations from the 
regression line, SSres, is just ( )n sy x− ⋅2 2 and the sum of 
squared deviations about the mean, SStot, is just ( ) .n sy−1 2  
(Recall the definition of sample variance or standard devi-
ation.) Hence the correlation coefficient is related to the 
results of regression analysis according to

r
n

n

s

s

y x

Y

= − −
−

⋅
1

2

1

2

2

As the standard deviation of the residuals about the 
regression line sy x⋅ decreases with respect to the total vari-
ation in the dependent variable, quantified with sY, the 
ratio s sy x y⋅ / decreases and the correlation coefficient 
increases. Thus, the greater the value of the correlation 
coefficient, the more precisely the dependent variable can 
be predicted from the independent variable.

This approach must be used with caution, however, 
because the absolute uncertainty as described with the 
confidence interval is usually more informative in that it 
allows you to gauge the size of the uncertainty in the pre-
diction relative to the size of effect that is of clinical or 
scientific importance. As Figure 8-7 showed, it is possible 
to have correlations well above 0.9 (generally considered 
quite respectable in biomedical research) and still have 
substantial uncertainty in the value of an additional 
observation for a given value of the independent value.

The correlation coefficient is also related to the slope of 
the regression equation according to

r b
s
s

X

Y

=
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We can use the following intuitive argument to justify 
this relationship: When there is no relationship between 
the two variables under study, both the slope of the regres-
sion line and the correlation coefficient are zero.

How to Test Hypotheses about  
Correlation Coefficients
Earlier in this chapter we tested for a trend by testing the 
hypothesis that the slope of the line of means was zero 
using the t test

t
b

sb

=

with n = n − 2 degrees of freedom. Since we have just 
noted that the correlation coefficient is zero when the 
slope of the regression line is zero, we will test the hypoth-
esis that there is no trend relating two variables by testing 
the hypothesis that the correlation coefficient is zero with 
the t test

t
r

r n
=

− −( )/1 22

with n = n − 2 degrees of freedom. While this statistic 
looks quite foreign, it is just another way of writing the 
t statistic used to test the hypothesis that β = 0.*

Journal Size and Selectivity
As part of an assessment of medical journals’ policies 
regarding how the editors handle the peer review of statis-
tical aspects of manuscripts submitted to their journals, 
Steven Goodman and his colleagues† surveyed a sample of 
medical journals. In addition to asking the editors about 
their policies on statistical review, Goodman and his col-
leagues also collected data on the percentage of submitted 
manuscripts that were ultimately accepted for publication 
and the size of the journals’ circulation. Figure 8-12 shows 
data relating these two variables, which makes it possible 
to test whether the larger journals are more selective.

Note that rather than plotting the publication rate 
against the circulation, Figure 8-12 plots it against the loga-
rithm of the circulation. The reason for this variable trans-
formation is to adjust the scale so that the data more closely 
met the assumptions of correlation, which require that the 
data be scattered around a straight line. (The Spearman 
rank correlation coefficient, discussed in the following sec-
tion, does not require making this assumption.) Variable 
transformations are a common tool in more advanced sta-
tistical methods to account for failures of normality or lin-
earity.‡ Logarithmic transformations are particularly useful 
when the observations span several orders of magnitude, as 
is the case here. This situation often arises in dose-ranging 
studies of drugs.

The correlation between acceptance rate and (loga-
rithm of) journal circulation, based on the 113 journals in 
the sample in Figure 8-14, is 0.64. To test the null hypoth-
esis that there is no linear relationship between acceptance 
rate and logarithm of journal circulation, compute

t =
− −

=0 64

1 0 64 113 2
8 78

2

.

( . )/( )
.

The computed value of t exceeds t.001 = 3.38 for n = 
113 − 2 = 111 degrees of freedom, so we conclude that 
there is a correlation between journal size and selectivity 
(P < .001).

*To see this, recall that
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Substitute this result together with b = r (sY/sX) into t = b/sb to obtain the 
t test for the correlation coefficient
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†Goodman SN, Altman DG, George SL. Statistical reviewing policies of 
medical journals. J Gen Intern Med. 1998;13:753–756.
‡For a more detailed discussion of variable transformations, see Glantz 
SA, Slinker BK. Primer of Applied Regression and Analysis of Variance, 
2nd ed. New York: McGraw-Hill; 2001, 150–153, 163–166.
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Does this result prove that increasing circulation makes 
journals more selective? No. An investigator could not 
manipulate the size of the circulation of the sample of 113 
different journals in Figure 8-14, so these data are the 
results of an observational rather than an experimental 
study. These two variables could be related to some third 
underlying confounding variable that makes both the 
observed variables change simultaneously. Indeed, in this 
case, the underlying confounding variable is probably per-
ceived quality of the journal, with authors willing to submit 
their manuscripts to more competitive journals because 
they are more prestigious, and because of the higher qual-
ity, more people are willing to subscribe to the journal.

When interpreting the results of regression analysis, it 
is important to keep the distinction between observa-
tional and experimental studies in mind. When investiga-
tors can actively manipulate the independent variable and 
observe changes in the dependent variable, they can draw 
strong conclusions about how changes in the independent 
variable cause changes in the dependent variable. On the 
other hand, when investigators only observe the two vari-
ables changing together, they can only observe that an 
association between them in which one changes as the 
other changes. It is impossible to rule out the possibility 
that both variables are independently responding to some 

third factor and that the independent variable does not 
causally affect the dependent variable.

  �THE SPEARMAN RANK 
CORRELATION COEFFICIENT

It is often desirable to test the hypothesis that there is a trend 
in a clinical state, measured on an ordinal scale, as another 
variable changes. The Pearson product-moment correlation 
coefficient is a parametric statistic designed to be used on 
data distributed normally along interval scales, so it cannot 
be used. It also requires that the trend relating the two vari-
ables be linear. When the sample suggests that the popula-
tion from which both variables were drawn from does not 
meet these criteria, it is possible to compute a measure of 
association based on the ranks rather than the values of the 
observations. This new correlation coefficient, called the 
Spearman rank correlation coefficient, rs , is based on ranks 
and can be used for data quantified with an ordinal scale.* 
The Spearman rank correlation coefficient is a nonparamet-
ric statistic because it does not require that the observations 
be drawn from a normally distributed population.†

The idea behind the Spearman rank correlation coeffi-
cient is simple. The values of the two variables are ranked 
in ascending (or descending) order, taking into account the 
signs of the values. For example, ranking 1, −1, and 2 (from 
the smallest value −1 to the largest value, 2) yields the ranks 
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FIGURE 8-14. There appears to be a relationship between the 
fraction of submitted papers journals select for publication 
and the (logarithm of ) journal circulation, with larger journals 
being more selective. (With kind permission from Springer 
Science + Business Media. Goodman SN, Altman DG, George 
SL. Statistical reviewing policies of medical journals. J Gen 
Intern Med. 1998;13:753-756, Fig. 1.)

*Another rank correlation coefficient, known as the Kendall rank correla-
tion coefficient t, can be generalized to the case in which there are mul-
tiple independent variables. For problems involving only two variables it 
yields conclusions identical to the Spearman rank correlation coefficient, 
although the value of t associated with a given set of observations differs 
from the value of rs associated with the same observations. For a discus-
sion of both procedures, see Siegel S, Castellar NJ Jr. Measures of asso-
ciation and their tests of significance. Nonparametric Statistics for the 
Behavioral Sciences, 2nd ed. New York: McGraw-Hill; 1988:chap 9.
†In addition to being explicitly designed to analyze data measured on a rank 
scale, nonparametric methods can be used in cases where the normality as-
sumptions that underlie the parametric methods are not met or you do not 
want to assume that they are met. When the assumptions of parametric meth-
ods are not met, the nonparametric methods are appropriate. When either 
nonparametric or parametric methods are appropriate, the nonparametric 
methods generally have lower power than the parametric methods. In the 
case of Pearson (parametric) and Spearman (nonparametric) correlations, 
this difference is very small. For example, sizes above 10, the power of the 
Spearman rank-order correlation coefficient is computed exactly the same as 
for the Pearson product-moment correlation, except that σ Z is computed as

σ Z

1.060

3
i.e.,=

−n
with 1.060 in the numeratoor instead of 1.000.
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2, 1, and 3, respectively. Next, the Pearson product-moment 
correlation between the ranks (as opposed to the observa-
tions) is computed using the same formula as before. A 
mathematically equivalent formula for the Spearman rank 
correlation coefficient that is easier to compute is

r
d

n n
s = − ∑

−
1

6 2

3

in which d is the difference of the two ranks associated with 
each point. The resulting correlation coefficient can then 
be compared with the population of all possible values it 
would take on if there were in fact no association between 
the two variables.* If the value of rs associated with the data 
is large compared to the expected distribution of rs if the 
null hypothesis of no relationship is true, we reject this null 

hypothesis and conclude that the observations are not 
compatible with the hypothesis of no association between 
the two variables.

Table 8-6 illustrates how to compute rs for the observa-
tions in Figure 8-3. Both the variables (height and weight) 
are ranked from 1 to 10 (since there are 10 data points), 1 
being assigned to the smallest value and 10 to the largest 
value. When there is a tie, as there is when the height 
equals 35 cm, both values are assigned the mean of the 
ranks that would be used if there were no tie. Since the 
weight tends to increase as height increases, the ranks of 
both variables increase together. The Pearson correlation 
of these two lists of ranks is the Spearman rank correla-
tion coefficient.

The Spearman rank correlation coefficient for the data 
in Table 8-6 is

rs = −

− + − + + +
+ − + +

1

6 1 1 2 0 0 5

0 5 0 0

2 2 2 2 2

2 2 2

[( ) ( ) .

( . ) ++ +
−

=

0 0

10 10

0 96

2 2

3

]

.

Table 8-7 gives various risks of making a Type I error. 
The observed value of rs exceeds .903, the critical value for 
the most extreme .1% of values when there are n = 10 data 
points, so we can report that there is an association 
between weight and height (P < .001).

*When there are ties, rs can be more accurately calculated by adjusting for 
ties using
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where τx and τy are the number of tied values at each value of x and y.

  �TABLE 8-6. Computation of Spearman Rank Correlation Coefficient for Observations in Figure 8-3

Height Weight

Value (cm) Rank* Value (g) Rank* Difference of Rank d

31 1 7.7 2 −1
32 2 8.3 3 −1
33 3 7.6 1 2
34 4 9.1 4 0
35 5.5 9.6 5 0.5
35 5.5 9.9 6 −0.5
40 7 11.8 7 0
41 8 12.2 8 0
42 9 14.8 10 0
46 10 13.0 9 0

*1 = smallest value; 10 = largest value



  �TABLE 8-7. Critical Values for Spearman Rank Correlation Coefficient*

Probability of Greater Value (P)

n .50 .20 .10 .05 .02 .01 .005 .002 .001

4 .600 1.000 1.000
5 .500 .800 .900 1.000 1.000
6 .371 .657 .829 .886 .943 1.000 1.000
7 .321 .571 .714 .786 .893 .929 .964 1.000 1.000
8 .310 .524 .643 .738 .833 .881 .905 .952 .976
9 .267 .483 .600 .700 .783 .833 .867 .917 .933

10 .248 .455 .564 .648 .745 .794 .830 .879 .903
11 .236 .427 .536 .618 .709 .755 .800 .845 .873
12 .217 .406 .503 .587 .678 .727 .769 .818 .846
13 .209 .385 .484 .560 .648 .703 .747 .791 .824
14 .200 .367 .464 .538 .626 .679 .723 .771 .802
15 .189 .354 .446 .521 .604 .654 .700 .750 .779
16 .182 .341 .429 .503 .582 .635 .679 .729 .762
17 .176 .328 .414 .485 .566 .615 .662 .713 .748
18 .170 .317 .401 .472 .550 .600 .643 .695 .728
19 .165 .309 .391 .460 .535 .584 .628 .677 .712
20 .161 .299 .380 .447 .520 .570 .612 .662 .696
21 .156 .292 .370 .435 .508 .556 .599 .648 .681
22 .152 .284 .361 .425 .496 .544 .586 .634 .667
23 .148 .278 .353 .415 .486 .532 .573 .622 .654
24 .144 .271 .344 .406 .476 .521 .562 .610 .642
25 .142 .265 .337 .398 .466 .511 .551 .598 .630
26 .138 .259 .331 .390 .457 .501 .541 .587 .619
27 .136 .255 .324 .382 .448 .491 .531 .577 .608
28 .133 .250 .317 .375 .440 .483 .522 .567 .598
29 .130 .245 .312 .368 .433 .475 .513 .558 .589
30 .128 .240 .306 .362 .425 .467 .504 .549 .580
31 .126 .236 .301 .356 .418 .459 .496 .541 .571
32 .124 .232 .296 .350 .412 .452 .489 .533 .563
33 .121 .229 .291 .345 .405 .446 .482 .525 .554
34 .120 .225 .287 .340 .399 .439 .475 .517 .547
35 .118 .222 .283 .335 .394 .433 .468 .510 .539
36 .116 .219 .279 .330 .388 .427 .462 .504 .533
37 .114 .216 .275 .325 .383 .421 .456 .497 .526
38 .113 .212 .271 .321 .378 .415 .450 .491 .519
39 .111 .210 .267 .317 .373 .410 .444 .485 .513
40 .110 .207 .264 .313 .368 .405 .439 .479 .507
41 .108 .204 .261 .309 .364 .400 .433 .473 .501
42 .107 .202 .257 .305 .359 .395 .428 .468 .495
43 .105 .199 .254 .301 .355 .391 .423 .463 .490
44 .104 .197 .251 .298 .351 .386 .419 .458 .484
45 .103 .194 .248 .294 .347 .382 .414 .453 .479
46 .102 .192 .246 .291 .343 .378 .410 .448 .474
47 .101 .190 .243 .288 .340 .374 .405 .443 .469
48 .100 .188 .240 .285 .336 .370 .401 .439 .465
49 .098 .186 .238 .282 .333 .366 .397 .434 .460
50 .097 .184 .235 .279 .329 .363 .393 .430 .456

Adapted from Zar JH. Biostatistical Analysis, 4th ed. Englewood Cliffs, NJ: Prentice-Hall; 1999, Appendix 116–117. Used by permission.
*For sample sizes greater than 50, use

t =
r

r n

s

( )/( )1 2− −s
2

With n = n − 2 degrees of freedom to obtain the approximate P value.
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In this example, of course, we could just as well have used 
the Pearson product-moment correlation. Had we been 
dealing with data measured on an ordinal scale, we would 
have had to use the Spearman rank correlation coefficient.

Cell Phone Radiation and Mitochondrial 
Reactive Oxygen Species in Sperm
We could not use linear regression to make statements 
about the relationship between the level of exposure to 
electromagnetic radiation from cell phones (measured as 

the specific absorbtion rate, SAR) and the induced level of 
sperm with mitochondrial reactive oxygen species (ROS) in 
Figure 8-8 because the relationship was not linear. We can, 
however, test for a relationship between these two variables 
(presented without the inappropriate linear regression line 
in Fig. 8-5) using a Spearman rank correlation coefficient 
because, unlike linear regression and the Pearson product-
moment correlation, it does not assume that the line of 
means is straight. Box 8-2 shows that the Spearman rank-
order correlation for the data on cell-phone-specific 

We first separately rank values of the two variables in Table 8-2 (and Figure 8-15), accounting for tied values within 
each variable. For example, there are three tied observations of SAR at 1.0 W/kg, which occupy ranks 3, 4, and 
5. All are assigned the average rank of 4. Likewise, there are two tied values at 2.8, which occupy ranks 6 and 7, 
so both are assigned the average rank of 6.5.

Cell Phone Signal Strength and Fraction of Sperm with Reactive Oxygen Species 

Cell-Phone-Specific Absorption 
Rate, SAR (W/kg)

Sperm with Mitochondrial  
ROS (%)

Difference of Ranks, d Squared Difference of Ranks, d2Value Rank Value Rank
0.4 2 0 2 0 0.00

27.5 12.5 0.5 12 0.5 .25
0.0 1 0 1 0 0.00
1.0 4 0 4 0 0.00
2.8 6.5 0.5 6 0.5 .25

10.1 10.5 −0.5 11 −0.5 .25
2.8 6.5 −0.5 7 −0.5 .25

27.5 12.5 −0.5 13 −0.5 .25
10.1 10.5 1 9.5 1 1.00
4.3 8.5 −1 9.5 −1 1.00
4.3 8.5 0.5 8 0.5 .25
1.0 4 −1 5 −1 1.00
1.0 4 1 3 1 1.00

Sum 5.50

Next, we compute the difference in the ranks (the last column) and use these differences to compute the Spear-
man rank-order correlation:

r
d

n ns = − ∑
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13 13
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	F rom Table 8-8, this value of rS exceeds .824, the critical value that defines the most extreme .1% of the sam-
pling distribution of the Spearman rank-order correlation under the null hypothesis of no relationship between the 
two variables, so we reject this null hypothesis and conclude that there is a relationship (P < .001).

Box 8-2 • Calculation of Spearman Rank–Order Correlation for the Data Relating Cell Phone 
Electromagnetic Radiation to Mitochondrial Reactive Oxygen Species
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absorption rate and mitochondrial ROS in Table 8-2 is rS = 
.985. This value exceeds .824 for n = 13 data points (from 
Table 8-7), so we can reject the null hypothesis of no rela-
tionship between these two variables with P < .001.

  �POWER AND SAMPLE SIZE IN 
REGRESSION AND CORRELATION

Power and sample-size computations for regression and 
correlation are straightforward, based on the fact that test-
ing for a slope significantly different from zero is equiva-
lent to testing for a correlation coefficient significantly 
different from zero.

The key to these computations is transforming the cor-
relation coefficient according to

Z
r

r
= +

−






1

2

1

1
ln

Z is normally distributed with standard deviation

σ Z n
=

−
1

3

Thus,

z
Z

Z

=
σ

follows the standard normal distribution if there is no 
correlation between the dependent and independent vari-
ables in the underlying population. If there is a correlation 
in the underlying population of ρ, then
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We will use this fact to compute power analogously to the 
way we did it for the t test.*

For example, let us compute the power of a regression 
analysis to detect a correlation of ρ = .9 in the underlying 
population with 95% confidence based on a sample size of 
10 observations. We first compute
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Therefore, if the actual correlation in the underlying 
population is .9, the distribution of z is centered on 
Zr /sZ = 1.472/.378 = 3.894 (Fig. 8-16; compare with 
Fig. 6-7).

If we use α = 0.05 to require 95% confidence in assert-
ing that the correlation is different from zero, then we will 
reject the null hypothesis when the value of z associated 
with the data exceeds zα (2) = 1.960, the (two-tail) value 
that defines the most extreme values of the normal distri-
bution (from Table 4-1 or 6-2). This value is 1.960 − 3.894 
= −1.934 below the center of the actual distribution of z. 
From Table 6-2, .97 of the possible z values is to the right 
of −1.934. Thus, the power of a linear regression or 
correlation of .9 with 95% confidence and a sample size of 
10 is 97%.

This process can be reduced to a simple equation. The 
power of linear regression or correlation to detect a  

*This fact can also be used as an alternative technique to test the hypoth-
esis that the correlation coefficient is zero by computing the confidence 
interval for the observed correlation coefficient as

Z z Z Z zZ Z− < < +α ρ ασ σ

then converting the upper and lower limits of Z back to correlations by 
inverting the transformation of r to Z.

rs = .985 P < .001
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of cell phone electromagnetic radiation.
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correlation of r is the area of the standard normal distri-
bution to the right of

z z
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1 2
1

3

− = −
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To obtain the sample size necessary to detect a  
specified correlation with a specified power to a specified 
level of confidence comes from solving this equation  
for n
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  �COMPARING TWO DIFFERENT 
MEASUREMENTS OF THE SAME THING: 
THE BLAND–ALTMAN METHOD*

The need often arises, particularly in clinical studies, to 
compare two different ways of measuring the same thing, 
when neither method is perfect. For example, as medical 
technology progresses, less invasive procedures for mea-
suring physiological parameters are developed. The ques-
tion that arises in the process of developing these new 
techniques is: How well do they agree with older, more 
invasive, techniques? Similar questions arise when assess-
ing the repeatability of a measurement: If I measure the 
same thing twice, how much do the measurements vary? 
Why not simply compute a regression equation or corre-
lation coefficient for the two sets of observations?

First, neither variable is a natural independent variable, 
and the choice of independent variable affects the results in 
a regression equation. The situation in comparing two 
imperfect clinical measurements of the same thing differs 
from the calibration problem that is common in laboratory 
science, in which one compares measured values with a 
known standard. For example, one could mix a known 
amount of salt with a known amount of distilled water to 
obtain a given saline concentration, then measure the salt 
concentrations with some device. It would then be possible 
to plot the actual salt concentration against the measured 
salt concentration to obtain a calibration curve. The stan-
dard error of the estimate would represent a good measure 
of uncertainty in the measurement. When comparing two 
imperfect clinical measurements, there is no such standard.

Second, the correlation coefficient measures the strength 
of agreement against the null hypothesis of no relationship. 
When comparing two measurements of the same thing, 
there will almost always be a relationship between these two 
measures, so the null hypothesis of no relationship that is 
implicit in correlation analysis makes no sense.

Third, correlation depends on the range of data in the 
sample. All else being equal, the wider the range of the 
observations, the higher the correlation. The presence of 
an outlier can lead to a high correlation even if there is a 
good deal of scatter among the rest of the observations.

J. Martin Bland and Douglas Altman† developed a sim-
ple descriptive technique to assess the agreement between 
two imperfect clinical measurements or repeatability  

*This section deals with more advanced material and can be skipped with 
no loss of continuity.

†For a more detailed discussion of the Bland–Altman method, see Altman 
DG, Bland JM. Measurement in medicine: the analysis of method com-
parison studies. Statistician. 1983;32:307–317, or Bland JM, Altman DG. 
Statistical methods for assessing agreement between two measures of 
clinical measurement. Lancet. 1986;1(8476):307–310.

FIGURE 8-16. The power of a correlation 
to detect a correlation in the population 
of ρ = .9 with a sample size of 10 and 
95% confidence is the area under the 
actual distribution of the z-test statistic 
above zα = 1.960. If ρ = 0.9 the actual 
distribution of z will be centered on 
3.894.
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of duplicate observations. The idea is quite simple: The 
most straightforward measure of disagreement between 
the two observations is the difference, so simply compute 
the differences between all the pairs of observations. 
Next, compute the mean and standard deviation of the 
differences. The mean difference is a measure of the bias 
between the two observations and the standard deviation 
is a measure of the variation between the two observa-
tions. Finally, because both observations are equally good 
(or bad), our best estimate of the true value of the vari-
able being measured is the mean of the two different 
observations. Plotting the difference against the mean 
gives an indication of whether there are any systematic 
differences between the two measurement techniques as 
a function of the magnitude of the thing being measured.

We will now illustrate the Bland-Altman method with 
an example.

Assessing Mitral Regurgitation  
with Echocardiography
The heart pumps blood around the body. The blood goes 
from the right heart to the lungs, where it takes up oxygen 
and releases waste gases, to the left heart, where it is 
pumped to the body, then back to the right heart. This 
pumping requires that there be valves inside the heart to 
keep the blood going in the correct direction when the 
heart contracts. The valve between the lungs and the left 
heart, known as the mitral valve, prevents blood from 
being pushed back into the lungs when the left heart is 
contracting to push the blood to the body. When this valve 
becomes diseased, it allows blood to be pushed back 
toward the lungs when the left heart contracts, a situation 
called mitral regurgitation. Mitral regurgitation is bad 
because it reduces the forward flow of blood from the 
heart to the body and also has adverse effects on the lungs. 

  �TABLE 8-8. Mitral Valve Regurgitant Fraction Measured with Doppler Echocardiography and Cardiac 
Catheterization in 21 People

Observations

Doppler Catheterization Difference Mean

.49 .62 −.13 .56

.83 .72 .11 .78

.71 .63 .08 .67

.38 .61 −.23 .50

.57 .49 .08 .53

.68 .79 −.11 .74

.69 .72 −.03 .71

.07 .11 −.04 .09

.75 .66 .09 .71

.52 .74 −.22 .63

.78 .83 −.05 .81

.71 .66 .05 .69

.16 .34 .18 .25

.33 .50 −.17 .42

.57 .62 −.05 .60

.11 .00 .11 .06

.43 .45 −.02 .44

.11 .06 .05 .09

.31 .46 −.15 .39

.20 .03 .17 .12

.47 .50 −.03 .49
Mean = −.03

SD = .12
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*MacIsaac AI, McDonald IG, Kirsner RLG, Graham SA, Gill RW. Quan-
tification of mitral regurgitation by integrated Doppler backscatter 
power. J Am Coll Cardiol. 1994;24:690–695. Data used with permission.

If it gets bad enough, it becomes necessary to do open 
heart surgery to replace the valve. Hence, measuring the 
amount of mitral regurgitation is an important clinical 
problem.

The amount of regurgitation is quantified with the 
regurgitant fraction,

Regurgitant fraction

Mitralflow (into the
l

=

eeft heart) aortic flow
(out to the body)

Mi

−

ttral flow

If the mitral valve is working properly, all the mitral 
flow into the left heart will appear as flow out into the 
aorta and the regurgitant fraction will be 0. As the valve 
becomes more and more incompetent the regurgitant 
fraction will increase toward 1.

The original way to measure regurgitant fraction has 
been to do a cardiac catheterization, in which a small tube 
(called a catheter) is threaded from an artery in the per-
son’s arm or leg into the heart; then, a chemical known as 
a contrast agent that appears opaque on an X-ray is 
injected into the heart so that the regurgitant flow can be 
seen in an X-ray motion picture taken while the contrast 
agent is being injected. This is an unpleasant, expensive, 
and potentially dangerous procedure.

Andrew MacIsaac and colleagues* proposed using a 
noninvasive procedure known as Doppler echocardiogra-
phy to replace cardiac catheterization as a way to measure 
regurgitant fraction. Doppler echocardiography involves 
placing a device that sends high frequency sound waves into 
the heart and records the reflections on the chest of a per-
son. This information can be used to measure flows into 
and out of the heart, much as weather radar measures flows 
of air to track storms and other weather patterns. They 
compared their method with traditional cardiac catheter-
ization to assess the level of agreement between the two 
methods.

Table 8-8 shows the results of their study and Figure 
8-17A shows a plot of the two measurements against each 
other, with each person in the study contributing one 
point. The correlation between the two methods is .89. 
This fact indicates reasonable agreement, but does not tell 
us anything about the quantitative nature of the agree-
ment in terms of how well the two methods quantify 
mitral regurgitant fraction.

A

B

r = 89

FIGURE 8-17. (A) Relationship between mitral regurgitant 
fraction measured with cardiac catheterization and Doppler 
echocardiography in 21 people. (B) Bland-Altman curve for 
the data in panel A. Note that there is little systematic 
difference between the two measurements.
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Table 8-8 also shows the computations necessary to 
construct a Bland-Altman description of how well the 
two methods agree. The third column in the table repre-
sents the differences between the two determinations of 
regurgitant fraction for each person, and the last column 
is the mean of the two methods. Figure 8-17B shows a 
plot of the differences against the mean responses for 
each person. There are several points to be made from 
this information. First, the mean difference in regurgi-
tant fraction between the two methods is only −.03, 
which indicates that there is little systemic difference 
between the two different methods. There also does not 
appear to be a relationship between the difference 
between the two observations and the mean mitral regur-
gitation, so each method is an unbiased estimate of the 
other. Next, the standard deviation of the differences is 
.12. Taking the range two standard deviations above and 
below the mean difference gives a measure of the extent 
of disagreement between the two methods, about ±.24, 
which is more than half the entire observed range of 0 to 
.83. For example, a Doppler result of .40 would mean the 
corresponding “gold standard” catheter result could be as 
low as .16 and as high as .64. These results lead to the 
conclusion that while, on average, the two methods pro-
duce results which are related to each other, the differ-
ences for individual patients are large enough that they 
cannot be used interchangeably to measure mitral regur-
gitation.

Similar procedures could be used to quantify repeat-
ability of two observations of the same thing by different 
observers or even repeat observations by the same 
observer.

  MULTIPLE REGRESSION

The regression methods we developed in this chapter all 
involve predicting the dependent variable from one inde-
pendent variable. As illustrated by the examples we have 
discussed (and presented in the problems), there are 
many problems in which such an analysis is appropriate 
and informative. In real life, including in biomedicine 
and epidemiology, the dependent (outcome) variable often 
depends on several independent variables acting simulta-
neously. In a way, we have already acknowledged that fact 
by trying to design observational studies and experi-
ments in a way to minimize the effects of potential con-
founding variables. Another way to think about these 

confounding variables is to think of them as additional 
independent variables.

Fortunately, the methods presented in this chapter 
immediately generalize to allow for such situations. To see 
how, let us write the simple linear regression equation for 
y as a function of the single independent variable x we 
have been studying using b0 instead of a for the intercept 
and b1 instead of b for the slope:

ŷ b b x= +0 1

It is a small logical step to consider the possibility of y 
depending on two independent variables x1 and x2, 

ŷ b b x b x= + +0 1 1 2 2

This equation is called a multiple linear regression (with 
two independent variables).

Not surprisingly, we can use the same criterion of min-
imizing the sum of squared differences between the 
observed and predicted values of the dependent variable y 
corresponding to the observed values of x1 holding x2 con-
stant and x2 to obtain the “best” estimates of the regression 
coefficients b1 and b2. In this case, b1 is an estimate of how 
much, on average, y changes for a unit change in x1 and b2 
is an estimate of how much, on average, y changes for a unit 
change in x2 holding x1 constant. Put another way, b1 is an 
estimate of the effect of changes in y associated with a unit 
change in x1 controlling for the effects of x2 (and vice versa).

Using procedures similar to those in this chapter, it is 
possible to estimate standard errors for the two regression 
coefficients and use those standard errors to test whether 
x1, x2 or both simultaneously predict y.

In fact, we can add any number of independent pre-
dictor variables; if we want to predict y based on three 
independent variables, the multiple regression equation 
would be

ŷ b b x b x b x= + + +0 1 1 2 2 3 3  

Multiple regression methods (also called multivariate 
methods) are very common in biomedical research 
because of their ability to model the reality that outcomes 
often depend simultaneously on several independent 
variables. They are also widely available in virtually any 
statistical package that runs on any computer, making 
them accessible and easy to use. As a result, there is a great 
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temptation to just dump multivariate data into a com-
puter, push “go,” and look for significant regression coef-
ficients.

The problem with doing this is that, like the simple 
linear regression we discuss in this chapter, multiple lin-
ear regression is based on the assumption that the 
underlying population meets analogous assumptions, 
namely that the line of means is straight and that the 
residuals are normally distributed about the regression 
line. Unfortunately, with more than one independent 
variable it is impossible to simply look at a graph of the 
data and regression line (as we did in the sperm irradia-
tion example in Fig. 8-8) because even if there are just 
two independent variables, the relationship between 
them and the dependent variable exists in a three-
dimensional space, which is hard to visualize. (If there 
are three independent variables, the relationship exists in 
a four-dimensional space, which is impossible to draw.) 
In addition, multiple regression analysis requires that all 
the independent variables be completely independent of 
each other, a situation that rarely exists in reality. It turns 
out that multiple regression analysis (and other related 
multivariate methods) still produce reliable results when 
this assumption is mildly violated, but this assumption 
needs to be checked. Indeed, there is a whole collection 
of so-called regression diagnostics to make sure that the 
data are consistent with the assumptions of multiple 
regression analysis.

It is also possible to conduct multiple regression 
analysis with a qualitative dependent variable (such as 
presence or absence of a disease) using a technique 
called logistic regression. Logistic regression is widely 
used in clinical trial and epidemiological research to 
control for the effects of potential confounding vari-
ables in assessing the effects of multiple independent 
variables on the qualitative (binary, yes or no) outcome 
variable.

While there are many such technical details that one 
must attend to when doing a multiple regression analysis, 
the basic ideas and interpretation of the results is essen-
tially the same as those this chapter presents. Multiple 
logistic regression analysis is a common technique to 
adjust the odds ratio for confounding factors, where the 
outcome variable is absence or presence of disease and 
the independent variable is exposure or non-exposure of 
risk factors in addition to the potential confounding 
variables.

  SUMMARY

The methods described in this chapter allow us to quan-
tify the relationship between two variables. The basic 
approach is the same as in earlier statistical methods: we 
described the nature of the underlying population, sum-
marized this information with appropriate statistical 
parameters, then developed procedures for estimating 
these parameters and their standard errors from one or 
more samples. When relating two variables with regres-
sion or correlation, it is particularly important to examine 
a graph of the data to see that the assumptions underlying 
the statistical method you are using is reasonably satisfied 
by the data you have collected.

  PROBLEMS

8-1 Plot the data and compute the linear regression of Y 
on X and correlation coefficient for each of the sets of 
observations shown in Table 8-9. In each case, draw the 
regression line on the same plot as the data. What stays the 
same and what changes? Why?

  �TABLE 8-9. Data for Problem 8-1

a b c

X Y X Y X Y

30 37 30 37 30 37
30 47 30 47 30 47
40 50 40 50 40 50
40 60 40 60 40 60

20 25 20 25
20 35 20 35
50 62 50 62
50 72 50 72

10 13
10 23
60 74
60 84

8-2 Plot the data and compute the linear regression of Y 
on X and correlation coefficient for each of the sets of 
observations shown in Table 8-10. In each case, draw the 
regression line on the same plot as the data. Discuss the 
results.
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8-3 The plots in Box 8-3 show data from four different 
experiments together with the associated observations. 
Compute the regression and correlation coefficients for 
each of these four sets of data. Discuss the similarities and 
differences among these sets of data. Include an examina-
tion of the assumptions made in linear regression and 
correlation analyses.*

8-4 Polychlorinated biphenyls (PCBs) are compounds 
that were once used as an insulating material in electrical 
transformers before being banned in the United States 
during the 1970s because of concerns about their toxicity. 
Despite the ban, PCBs can still be detected in most people 
because they are persistent in the environment and tend 
to accumulate in fat tissue as animals that absorb PCBs eat 
other animals that have absorbed PCBs. One of the major 
current sources of human PCB exposure is eating fatty 
fish caught from contaminated waters. In the early 1980s, 
the husband and wife team of Joseph Jacobsen and Sandra 
Jacobsen† began a prospective study to examine the rela-
tionship between PCB levels in a group of women who ate 
Lake Michigan fish and the intellectual development of 
their children. The amount of PCBs (ng/g of fat) detected 

  �TABLE 8-10. Data for Problem 8-2

a b

X Y X Y

15 19 20 21
15 29 20 31
20 25 30 18
20 35 30 28
25 31 40 15
25 41 40 25
30 37 40 75
30 47 40 85
60 40 50 65

50 75
60 55
60 65

in maternal milk was used as an indicator of prenatal 
exposure to PCBs. The Jacobsens then administered the 
Wechsler Intelligence Scale for Children IQ test to the 
children when they were 11 years old. Table 8-11 shows 
the results. Is there any association between maternal PCB 
level and the childrens’ IQ score?

*This example is from Anscombe FJ. Graphs in statistical analysis. Am 
Stat. 1973;27:17–21.
†Jacobsen J, Jacobsen S. Intellectual impairment in children exposed to 
polychlorinated biphenyls in utero. N Engl J Med. 1996;335:783–789.

‡Shirtcliff E, et al. Assaying estradiol in biobehavioral studies using saliva 
and blood spots: simple radioimmunoassay protocols, reliability and 
comparative validity. Horm Behav. 2000;38:137–147.

  �TABLE 8-11. Data on PCB Levels in Maternal 
Milk and Childrens’ IQ

Maternal Milk PCB Level 
(ng/g of Fat) Full-Scale IQ

539 116
1093 108
1665 94

476 127
550 122
999 97
974 85

1205 115
604 112
850 108
596 112
547 105

1164 95
905 108

8-5 The ability to measure hormone levels based on a 
blood spot (like that used by diabetics for glucose moni-
toring) has several advantages over measurements based 
on a blood draw. First, blood spots allow for repeated 
measurements over the time course of minutes and hours. 
Second, they can be collected with minimal training by a 
research assistant or the subject. Finally, they are easy to 
store in a variety of experimental conditions. The low lev-
els of hormone in both blood spots and blood draws are 
currently measured by a technique called the radioimmu-
noassay (RIA), an assay based on binding of a radioac-
tively labeled hormone to a specific antibody. Elizabeth 
Shirtcliff and colleagues‡ used a modification of a com-
mercially available RIA to detect estradiol (the primary 
estrogen found in humans) in blood spots and compared 
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Box 8-3 • Plots and Raw Data for Problem 8-3

Experiment 1 Experiment 2 Experiment 3 Experiment 4

X Y X Y X Y X Y

10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

S X 99 99 99 99
S Y 82.5 82.5 82.5 82.5
S X2 1001 1001 1001 1001
S Y2 660 660 660 660
S XY 797.5 797.5 797.5 797.5
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  �TABLE 8-12. Estradiol Measured in Two Different 
Ways

Estradiol Measurements

Blood Spot Estradiol 
(pg/mL)

Blood Draw Estradiol
(pg/mL)

17 25
18 29
21 24
22 33
27 35
30 40
34 40
35 45
36 58
40 63
44 70
45 60
49 70
50 95
52 105
53 108
57 95
58 90
72 130

138 200

ent levels of l-arginine and subjected to two different 
stimuli, acetylcholine and a drug, A23187 (Table 8-13). Is 
there a relationship between relaxation and l-arginine 
level in the presence of these two different relaxing agents? 
Is there a difference in the effects of these two drugs? 
(Note: To “linearize” the data, take natural logarithms of 
the arginine levels before doing the analysis.) 

8-7 Erectile dysfunction is widely recognized to be asso-
ciated with diabetes and cardiovascular disease. To 
investigate whether erectile dysfunction was associated 
with lower urinary tract infections, Wo-Sik Chung and 
colleagues* administered standard questionnaires to 
men between ages 40 and 70 years to assess the presence 
of lower urinary tract infections as well as questions 
regarding erectile function, with higher scores on the 
questionnaires indicating more serious problems with 
urinary tract infections and better erectile function, 
respectively (Table 8-14). Is there evidence for a rela-
tionship between urinary tract infections and erectile 
dysfunction?

8-8 As part of a study of the nature of cancers of the gum 
and lower jaw, Eiji Nakayama and his colleagues† were 
interested in relating the extent of cancer invasion, deter-
mined by direct histological investigation with the levels 
of invasion measured on a computed tomographic scan of 
people with cancer. They measured both variables on an 
ordinal scale as follows:

1.	 Erosive
2.	 Erosive and Partially Mixed
3.	 Mixed
4.	 Mixed and Partially Invasive
5.	 Invasive

Is there a relationship between these two ways of quantify-
ing the extent of cancer between these two ways of assess-
ing the disease severity? Is the relationship strong enough 
to use these two methods interchangeably? The data are 
shown in Table 8-15.

*Chung W-S, et al. Lower urinary tract symptoms and sexual dysfunction 
in community-dwelling men. Mayo Clin Proc. 2004;79:745–749.
†Nakayama E, et al. The correlation of histological features with a pan-
oramic radiography pattern and a computed tomography pattern of 
bone destruction in carcinoma of the mandibular gingival. Oral Surg 
Oral Med Oral Path Oral Radiol Endod. 2003;96:774–782.

the results to those obtained by blood draw. How good is 
the agreement between the volumes measured using these 
two techniques? The results are shown in Table 8-12.

*Hutchison S, et al. Secondhand tobacco smoke impairs rabbit pulmo-
nary artery endothelium-dependent relaxation. Chest. 2001;120:2004–
2012.

8-6 Arteries adjust their size on a minute-to-minute basis 
to meet the needs of the body for blood to carry oxygen to 
the tissues and to remove waste products. A substantial 
part of this response is mediated by the one cell thick lin-
ing of the arteries known as the vascular endothelium 
responding to nitric oxide that the endothelium produces 
from the amino acid l-arginine. As part of an investiga-
tion of the effect of secondhand smoke on the ability of 
the endothelium to dilate arteries, Stuart Hutchison and 
colleagues* examined the relationship between how much 
segments of arteries relaxed after being exposed to differ-



182 Chap t e r  8

  �TABLE 8-13. Artery Relaxation Force after Exposure to Two Different Relaxing Agents 

Acetylcholine A23187

Arginine Level Relaxation Force (%) Arginine Level Relaxation Force (%)

.02 −10 .03 −2

.03 −21 .04 −47

.1 −48 .10 −36

.5 −52 .13 −27

.6 −41 .5 −43

.7 −52 .6 −56

.9 −67 .6 −50

.9 −58 .7 −77

.9 −32 .8 −67
1.2 −58 .8 −42
1.3 −29 1.2

1.2
1.6

−60
−36
−68

  �TABLE 8-14. Relationship Between Urinary Tract 
Infections and Erectile Dysfunction

Urinary Tract Infection 
Score Erectile Function Score

1 14
0 15
9 6
6 11
5 12
5 10
0 11
4 12
8 10
7 8
0 14

10 3
8 9
4 12

16 3
8 9
2 13

13 2
10 4
18 4

  �TABLE 8-15. Two Different Ways of Measuring 
Gum and Jaw Disorders 

Histology Computed Tomography

3 5
3 2
1 1
4 5
3 3
3 3
5 4
4 3
4 3
3 3
5 5
4 3
4 4
2 2
3 5
1 3
3 2
2 3
4 3
2 3
3 2
2 3
3 3
3 3
2 5
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  �TABLE 8-16.  Relationship Between Obesity and Insulin Sensitivity

Controls 
(No Immediate Family Member with High Blood Pressure)

Relatives  
(Immediate Family Member with High Blood Pressure)

Waist/Hip Ratio, R
   Insulin 
Sensitivity

Log (Insulin  
Sensitivity) I Waist/Hip Ratio, R

   Insulin 
Sensitivity

Log (Insulin  
Sensitivity) I

0.775 21.0 1.322 0.800 10.0 1.000
0.800 20.0 1.301 0.810 5.0 0.699
0.810 13.5 1.130 0.850 9.5 0.978
0.800 8.5 0.929 0.875 2.5 0.398
0.850 10.5 1.021 0.850 4.0 0.602
0.860 10.0 1.000 0.870 5.8 0.763
0.925 12.8 1.107 0.910 9.8 0.971
0.900 9.0 0.954 0.925 8.0 0.903
0.925 6.5 0.813 0.925 6.0 0.778
0.945 11.0 1.041 0.940 4.3 0.633
0.945 10.5 1.021 0.945 8.5 0.929
0.950 9.5 0.978 0.960 9.0 0.954
0.975 5.5 0.740 1.100 8.5 0.929
1.050 6.0 0.778 1.100 4.5 0.653
1.075 3.8 0.580 0.990 2.3 0.362

8-9 What is the power of the study of journal circulation 
and selectivity described in Figure 8-12 to detect a correla-
tion of .6 with 95% confidence? (There are 113 journals in 
the sample.)

8-10 What sample size is necessary to have an 80% power 
for detecting a correlation between journal circulation 
and selectivity with 95% confidence if the actual correla-
tion in the population is .6?

8-11 Clinical and epidemiologic studies have demon-
strated an association between high blood pressure, dia-
betes, and high levels of lipids measured in blood. In 
addition, several studies demonstrated that people with 
high blood pressure have lower insulin sensitivity than 
people with normal blood pressure, and that physical fit-
ness affects insulin sensitivity. As part of an investigation 
of whether there is a genetic component of the relation-

ship between high blood pressure and insulin sensitivity, 
Tomas Endre and colleagues* investigated the relationship 
between insulin sensitivity and a measure of physical fit-
ness in two groups of men with normal blood pressure, 
one with immediate relatives who have high blood pres-
sure and a similar group of men from families with nor-
mal blood pressure. They used the waist-to-hip ratio of the 
men as a measure of physical fitness and examined the rela-
tionship between it and insulin sensitivity index in these 
two groups of men (Table 8-16). Is the relationship the 
same in these two groups of men? (Use the logarithm of the 
insulin sensitivity index as the dependent variable in order 
to linearize the relationship between the two variables.)

*Endre T, et al. Insulin resistance is coupled to low physical fitness in 
normotensive men with a family history of hypertension. J Hypertens. 
1994;12:81–88.
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9Experiments When Each 
Subject Receives More 
Than One Treatment

  �EXPERIMENTS WHEN SUBJECTS ARE 
OBSERVED BEFORE AND AFTER A 
SINGLE TREATMENT: THE PAIRED t TEST

In experiments in which it is possible to observe each 
experimental subject before and after administering a sin-
gle treatment, we will test a hypothesis about the average 
change the treatment produces instead of the difference in 
average responses with and without the treatment. This 
approach reduces the variability in the observations due 
to differences between individuals and yields a more sen-
sitive test.

Figure 9-1 illustrates this point. Figure 9-1A shows daily 
urine production in two samples of 10 different people each; 
one sample group took a placebo and the other took a drug. 
Since there is little difference in the mean response relative 
to the standard deviations, it would be hard to assert that the 
treatment produced an effect on the basis of these observa-
tions. In fact, t computed using the methods of Chapter 4 is 
only 1.33, which comes nowhere near t.05 = 2.101, the critical 
value for n = npla + ndrug - 2 = 10 + 10 - 2 = 18 degrees of 
freedom.

Now consider Figure 9-1B. It shows urine productions 
identical to those in Figure 9-1A but for an experiment in 
which urine production was measured in one sample of 10 
individuals before and after administering the drug. A 
straight line connects the observations for each individual. 
Figure 9-1B shows that the drug increased urine production 
in 8 of the 10 people in the sample. This result suggests that 
the drug is an effective diuretic.

The procedures for testing hypotheses discussed in 
Chapters 3 to 5 apply to experiments in which the con-
trol and treatment groups contain different subjects 
(individuals). It is often possible to design experiments 
in which each experimental subject can be observed 
before and after one or more treatments. Such experi-
ments are generally more sensitive because they make it 
possible to measure how the treatment affects each indi-
vidual. When the control and treatment groups consist 
of different individuals, the changes due to the treatment 
may be masked by variability between experimental sub-
jects. This chapter shows how to analyze experiments in 
which each subject is repeatedly observed under differ-
ent experimental conditions.

We will begin with the paired t test for experiments in 
which the subjects are observed before and after receiving 
a single treatment. Then, we will generalize this test to 
obtain repeated measures analysis of variance, which per-
mits testing hypotheses about any number of treatments 
whose effects are measured repeatedly in the same subjects. 
We will explicitly separate the total variability in the obser-
vations into three components: variability between the 
experimental subjects, variability in each individual sub-
ject’s response, and variability due to the treatments. Like 
all analyses of variance (including t tests), these procedures 
require that the observations come from normally distrib-
uted populations. (Chapter 10 presents methods based on 
ranks that do not require this assumption.) Finally, we will 
develop McNemar’s test to analyze data measured on a 
nominal scale and presented in contingency tables.
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By concentrating on the change in each individual that 
accompanied taking the drug (in Fig. 9-1B), we could 
detect an effect that was masked by the variability between 
individuals when different people received the placebo 
and the drug (in Fig. 9-1A).

Now, let us develop a statistical procedure to quantify 
our subjective impression in such experiments. The paired 
t test can be used to test the hypothesis that there is, on the 
average, no change in each individual after receiving the 
treatment under study. Recall that the general definition 
of the t statistic is

t =

−Parameter estimate true value of
populatioon parameter

Standard error of parameter esttimate

The parameter we wish to estimate is the average dif-
ference in response δ in each individual due to the treat-
ment. If we let d equal the observed change in each 
individual that accompanies the treatment, we can use d ,
the mean change, to estimate δ. The standard deviation of 
the observed differences is

s
d d

nd =
−

−
∑( )2

1

So the standard error of the difference is

s
s

n
d

d=

Therefore,

t
d

s
d

= −δ

To test the hypothesis that there is, on the average, no 
response to the treatment, set δ = 0 in this equation to 
obtain

t
d

s
d

=

The resulting value of t is compared with the critical 
value of n = n - 1 degrees of freedom.

To recapitulate, when analyzing data from an experi-
ment in which it is possible to observe each individual 
before and after applying a single treatment:

•	 Compute the change in response that accompanies the 
treatment in each individual d.

•	 Compute the mean change d and the standard error of 
the mean change s

d
.
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FIGURE 9-1. (A) Daily urine production in 
two groups of 10 different people. One 
group of 10 people received the placebo 
and the other group of 10 people received 
the drug. The diuretic does not appear to 
be effective. (B) Daily urine production in 
a single group of 10 people before and 
after taking a drug. The drug appears to 
be an effective diuretic. The observations 
are identical to those in panel A; by 
focusing on changes in each individual’s 
response rather than the response of all 
the people taken together, it is possible to 
detect a difference that was masked by 
the between subjects variability in panel A.
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•	 Use these numbers to compute t d s
d

= / .

•	 Compare this t with the critical value for n = n - 1 
degrees of freedom, where n is the number of experi-
mental subjects.

Note that the number of degrees of freedom, n, associ-
ated with the paired t test is n - 1, less than the 2 (n - 1) 
degrees of freedom associated with analyzing these data 
using an unpaired t test. This loss of degrees of freedom 
increases the critical value of t that must be exceeded to 
reject the null hypothesis of no difference. While this situ-
ation would seem undesirable, because of the typical bio-
logical variability that occurs between individuals this 
loss of degrees of freedom is virtually always more than 
compensated for by focusing on differences within subjects, 
which reduces the variability in the results used to com-
pute t. All other things being equal, paired designs are 
almost always more powerful for detecting effects in bio-
logical data than unpaired designs.

Finally, the paired t test, like all t tests, is predicated on 
a normally distributed population. In the t test for 
unpaired observations developed in Chapter 4, responses 
needed to be normally distributed. In the paired t test, the 
differences (changes within each subject) associated with 
the treatment need to be normally distributed.

Cigarette Smoking and Platelet Function
Smokers are more likely to develop diseases caused by 
abnormal blood clots (thromboses), including heart 
attacks and occlusion of peripheral arteries, than non-
smokers. Platelets are small bodies that circulate in the 
blood and stick together to form blood clots. Since smok-
ers experience more disorders related to undesirable 
blood clots than nonsmokers, Peter Levine* drew blood 
samples in 11 people before and after they smoked a single 
cigarette and measured the extent to which platelets 
aggregated when exposed to a standard stimulus. This 
stimulus, adenosine diphosphate, makes platelets release 
their granular contents, which, in turn, makes them stick 
together and form a blood clot. 

Figure 9-2 shows the results of this experiment, with 
platelet stickiness quantified as the maximum percentage 

of all the platelets that aggregated after being exposed to 
adenosine diphosphate. The pair of observations made in 
each individual before and after smoking the cigarette is 
connected by straight lines. The mean percentage aggre-
gations were 43.1% before smoking and 53.5% after 
smoking, with standard deviations of 15.9% and 18.7%, 
respectively. Simply looking at these numbers does not 
suggest that smoking had an effect on platelet aggrega-
tion. This approach, however, omits an important fact 
about the experiment: the platelet aggregations were not 
measured in two different (independent) groups of peo-
ple, smokers and nonsmokers, but in a single group of 
people who were observed both before and after smok-
ing the cigarette.

FIGURE 9-2. Maximum percentage platelet aggregation 
before and after smoking a tobacco cigarette in 11  
people. (Adapted with permission of the American Heart 
Association, Inc. from Fig. 1 of Levine PH. An acute effect 
of cigarette smoking on platelet function: a possible link 
between smoking and arterial thrombosis. Circulation. 
1973;48:619–623.)

*Levine PH. An acute effect of cigarette smoking on platelet function: a 
possible link between smoking and arterial thrombosis. Circulation. 
1973;48:619–623.
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In all but one individual, the maximum platelet aggre-
gation increased after smoking the cigarette, suggesting 
that smoking facilitates thrombus formation. The means 
and standard deviations of platelet aggregation before and 
after smoking for all people taken together did not suggest 
this pattern because the variability between individuals 
masked the variability in platelet aggregation that was due 
to smoking the cigarette. When we took into account the 
fact that the data consisted of pairs of observations done 
before and after smoking in each individual, we could 
focus on the change in response and so remove the vari-
ability that was due to the fact that different people have 
different platelet-aggregation tendencies regardless of 
whether they smoked a cigarette or not.

The changes in maximum percent platelet aggregation 
that accompany smoking are (from Fig. 9-2) 2%, 4%, 
10%, 12%, 16%, 15%, 4%, 27%, 9%, –1%, and 15%. 
Therefore, the mean change in percent platelet aggrega-
tion with smoking in these 11 people is d = 10 3. %. The 
standard deviation of the change is 8.0%, so the standard 

error of the change is s
d

= =8 0 11 2 41. / . %. Finally, our 
test statistic is

t
d

s
d

= = =10 3

2 41
4 27

.

.
.

This value exceeds 3.169, the value that defines the 
most extreme 1% of the t distribution with n = n - 1 = 
11 - 1 = 10 degrees of freedom (from Table 4-1). There-
fore, we report that smoking increases platelet aggrega-
tion (P < .01).

How convincing is this experiment that a constituent 
specific to tobacco smoke, as opposed to other chemicals 
common to smoke in general (e.g., carbon monoxide), or 
even the stress of the experiment produced the observed 
change? To investigate this question, Levine also had his 
subjects “smoke” an unlit cigarette and a lettuce leaf ciga-
rette that contained no nicotine. Figure 9-3 shows the 
results of these experiments, together with the results of 
smoking a standard cigarette (from Fig. 9-2).

FIGURE 9-3. Maximum percentage 
platelet aggregation in 11 people before 
and after pretending to smoke (“sham 
smoking”), before and after smoking a 
lettuce-leaf cigarette that contained no 
nicotine, and before and after smoking a 
tobacco cigarette. These observations, 
taken together, suggest that it was 
something in the tobacco smoke, rather 
than the act of smoking or other general 
constituents of smoke, that produced the 
change in platelet aggregation. (Redrawn 
with permission of the American Heart 
Association, Inc. from Fig. 1 of Levine PH. 
An acute effect of cigarette smoking on 
platelet function: a possible link between 
smoking and arterial thrombosis. 
Circulation. 1973;48:619–623.)
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When the experimental subjects merely pretended to 
smoke or smoked a non-nicotine cigarette made of dried 
lettuce, there was no discernible change in platelet aggre-
gation. This situation contrasts with the increase in plate-
let aggregation that followed smoking a single tobacco 
cigarette. This experimental design illustrates an impor-
tant point:

In a well-designed experiment, the only difference 
between the treatment group and the control group, 
both chosen at random from a population of interest, 
is the treatment.

In this experiment the treatment of interest was 
tobacco constituents in the smoke, so it was important to 
compare the results with observations obtained after 
exposing the subjects to non tobacco smoke. This step 
helped ensure that the observed changes were due to the 
tobacco rather than smoking in general. The more care-
fully the investigator can isolate the treatment effect, the 
more convincing the conclusions will be.

There are also subtle biases that can cloud the conclu-
sions from an experiment. Most investigators, and their 
colleagues and technicians, want the experiments to sup-
port their hypothesis. In addition, the experimental sub-
jects, when they are people, generally want to be helpful 
and wish the investigator to be correct, especially if the 
study is evaluating a new treatment that the experimental 
subject hopes will provide a cure. These factors can lead 
the people doing the study to tend to slant judgment calls 
(often required when collecting the data) toward making 
the study come out the way everyone wants. For example, 
the laboratory technicians who measure platelet aggregation 
might read the control samples on the low side and the 
smoking samples on the high side without even realizing 
it. Perhaps some psychological factor among the experi-
mental subjects (analogous to a placebo effect) led their 
platelet aggregation to increase when they smoked the 
tobacco cigarette. Levine avoided these difficulties by doing 
the experiments in a double blind manner in which the 
investigator, the experimental subject, and the laboratory 
technicians who analyzed the blood samples did not know 
the content of the cigarettes being smoked until after all 
experiments were complete and specimens analyzed. As 
discussed in Chapter 2, double-blind studies are the most 
effective way to eliminate bias due to both the observer and 
experimental subject.

In single blind studies one party, usually the investiga-
tor, knows which treatment is being administered. This 

approach controls biases due to the placebo effect but not 
observer biases. Some studies are also partially blind, in 
which the participants know something about the treat-
ment but do not have full information. For example, the 
blood platelet study might be considered partially blind 
because both the subject and the investigator obviously 
knew when the subject was only pretending to smoke. It 
was possible, however, to withhold this information from 
the laboratory technicians who actually analyzed the 
blood samples to avoid biases in their measurements of 
percent platelet aggregation.

The paired t test can be used to test hypotheses when 
observations are taken before and after administering a 
single treatment to a group of individuals. To generalize 
this procedure to experiments in which the same indi-
viduals are subjected to a number of treatments, we now 
develop repeated measures analysis of variance.

To do so, we must first introduce some new nomencla-
ture for analysis of variance. To ease the transition, we 
begin with the analysis of variance presented in Chapter 3, 
in which each treatment was applied to different individu-
als. After reformulating this type of analysis of variance, 
we will go on to the case of repeated measurements on the 
same individual.

  �ANOTHER APPROACH TO ANALYSIS 
OF VARIANCE*

When we developed analysis of variance in Chapter 3, we 
assumed that all the samples were drawn from a single pop-
ulation (i.e., that the treatments had no effect), estimated 
the variability in that population from the variability within 
the sample groups and between the sample groups, then 
compared these two estimates to see how compatible they 
were with the original assumption – the null hypothesis – 
that all the samples were drawn from a single population. 
When the two estimates of variability were unlikely to arise 
if the samples had been drawn from a single population, we 
rejected the null hypothesis of no effect and concluded that 

*This and the following section, which develops repeated measures anal-
ysis of variance (the multitreatment generalization of the paired t test), are 
more mathematical than the rest of the text. Some readers may wish to 
skip this section until they encounter an experiment that should be ana-
lyzed with repeated measures analysis of variance. Despite the fact that 
such experiments are common in the biomedical literature, this test is 
rarely used. This decision leads to the same kinds of multiple t test errors 
discussed in Chapters 3 and 4 for the unpaired t test.
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at least one of the samples represented a different popula-
tion (i.e., that at least one treatment had an effect). We used 
estimates of the population variance to quantify variability.

In Chapter 8, we used a slightly different method to 
quantify the variability of observed data points about a 
regression line. We used the sum of squared deviations 
about the regression line to quantify variability. The vari-
ance and sum of squared deviations, of course, are inti-
mately related. One obtains the variance by dividing the 
sum of squared deviations by the appropriate number of 
degrees of freedom. We now will recast analysis of vari-
ance using sums of squared deviations to quantify vari-
ability. This new nomenclature forms the basis of all forms 
of analysis of variance, including repeated measures 
analysis of variance.

In Chapter 3, we considered the following experi-
ment: To determine whether diet affected cardiac output 
in people living in a small town, we randomly selected 
four groups of seven people each. People in the control 
group continued eating normally; people in the second 
group ate only spaghetti; people in the third group ate 
only steak; and people in the fourth group ate only fruit 
and nuts. After 1 month, each person was catheterized 
and his cardiac output measured. Figure 3-1 showed that 
diet did not, in fact, affect cardiac output. Figure 3-2 
showed the results of the experiment as they would 
appear to you as an investigator or reader. Table 9-1 pres-
ents the same data in tabular form. The four different 
groups did show some variability in cardiac output. The 
question is: How consistent is this observed variability 

with the hypothesis that diet did not have any effect on 
cardiac output?

Some New Notation
Tables 9-1 and 9-2 illustrate the notation we will now use 
to answer this question; it is required for more general 
forms of analysis of variance. The four different diets are 
called the treatments and are represented by the columns 
in the table. We denote the four different treatments with 
the numbers 1 to 4 (1 = control, 2 = spaghetti, 3 = steak, 
4 = fruit and nuts). Seven different people receive each 
treatment. Each particular experimental subject (or, more 
precisely, the observation or data point associated with 
each subject) is represented by Xts, where t represents the 
treatment and s represents a specific subject in that treat-
ment group. For example, X11 = 4.6 L/min represents the 
observed cardiac output for the first subject (s = 1) who 
received the control diet (t = 1). X35 = 5.1 L/min represents 
the fifth subject (s = 5) who had the steak diet (t = 3).

Tables 9-1 and 9-2 also show the mean cardiac outputs 
for all subjects (in this case, people) receiving each of the 
four treatments, labeled X X X X1 2, 3 4, , and . For example, 
X 2 = 5.23 L/min is the mean cardiac output observed 
among people who were treated with spaghetti. The tables 
also show the variability within each of the treatment 
groups, quantified by the sum of squared deviations about 
the treatment mean,

Sum of squares for treatment t = sum, over all 
subjects who received treatment t, of (value of 

  TABLE 9-1. Cardiac Output (L/min) in Four Groups of Seven People Fed Different Diets

Treatment (Diet)

Control Spaghetti Steak Fruit and Nuts

4.6 4.6 4.3 4.3
4.7 5.0 4.4 4.4
4.7 5.2 4.9 4.5
4.9 5.2 4.9 4.9
5.1 5.5 5.1 4.9
5.3 5.5 5.3 5.0
5.4 5.6 5.6 5.6

Treatment (column) means 4.96 5.23 4.93 4.80
Treatment (column) sums of squares 0.597 0.734 1.294 1.200

Grand mean = 4.98 Total sum of squares = 4.507
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observation for subject–mean response of all indi-
viduals who received treatment t)2.

The equivalent mathematical statement is

SSt ts t
s

X X= −∑( )2

The summation symbol, Σ, has been modified to indicate 
that we sum over all s subjects who received treatment t. We 
need this more explicit notation because we will be summing 
up the observations in different ways. For example, the sum 
of squared deviations from the mean cardiac output for the 
seven people who ate the control diet (t = 1) is

SS1 1 1
2

2 24 6 4 96 4 7 4 96 4

= −

= − + − +

∑( )

( . . ) ( . . ) ( .

X Xs
s

77 4 96

4 9 4 96 5 1 4 96 5 3 4 96

2

2 2

−
+ − + − + −

. )

( . . ) ( . . ) ( . . ))

( . . ) . ( )

2

2 25 4 4 96 0 597+ − = L/min

Recall that the definition of sample variance is

s
X X

n
2

2

1
=

−
−

∑( )

where n is the size of the sample. The expression in the 
numerator is just the sum of squared deviations from 
the sample mean, so we can write

s
n

2

1
=

−
SS

Hence, the variance in treatment group t equals the sum 
of squares for that treatment divided by the number of indi-
viduals who received the treatment (i.e., the sample size) 
minus 1:

s
nt

t2

1
=

−
SS

In Chapter 3, we estimated the population variance 
from within the groups for our diet experiment with the 
average of the variances computed from within each of 
the four treatment groups

s s s s swit con spa st fn
2 1

4
2 2 2 2= + + +( )

In the notation of Table 9-1, we can rewrite this equa-
tion as

s s s s swit
2 1

4 1
2

2
2

3
2

4
2= + + +( )

Now, replace each of the variances in terms of sums of 
squares.

s

X X

n
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X

s
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


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
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
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

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  TABLE 9-2. Notation for One-Way Analysis of Variance in Table 9-1

Treatment

1 	 2 	 3 	 4

X11 	 X21 	 X31 	 X41

X12 	 X22 	 X32 	 X42

X13 	 X23 	 X33 	 X43

X14 	 X24 	 X34 	 X44

X15 	 X25 	 X35 	 X45

X16 	 X26 	 X36 	 X46

X17 	 X27 	 X37 	 X47

Treatment (column) means X1 	 X2 	 X3 	 X4

Treatment (column) sums of squares ( )X X1 1
2

S
s

−∑ ( )X X2 2
2

S
s

−∑ ( )X X3 3
2

S
s

−∑ ( )X X4 4
2

S
s

−∑

Grand mean = X Total sum of squares = −∑∑ ( )X Xt
st

s
2
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or

s
n n n nwit

2 SS SS SS SS
=

−
+

−
+

−
+

−






1

4 1 1 1 1
1 2 3 4

in which n = 7 represents the size of each sample group. 
Factor n - 1 out of the four expressions for variance com-
puted from within each of the four separate treatment 
groups, and let m = 4 represent the number of treatments 
(diets), to obtain

s
m nwit

SS SS SS SS2 1 2 3 41

1
=

+ + +
−

The numerator of this fraction is just the total of the 
sums of squared deviations of the observations about 
the means of their respective treatment groups. Call it 
the within treatments (or within groups) sum of squares 
SSwit. Note that the within treatments sum of squares is 
a measure of variability in the observations that is inde-
pendent of whether or not the mean responses to the 
different treatments are the same.

For the data from our diet experiment in Table 9-1

SS L/minwit = + + + =. . . . . ( )597 734 1 294 1 200 3 825 2

Given our definition of SSwit and the equation swit
2

above, we can write

s
m nwit

witSS2

1
=

−( )

swit
2 appears in the denominator of the F ratio associated 

with nd = m (n - 1) degrees of freedom. Using this notation 
for analysis of variance, degrees of freedom are often 
denoted by DF rather than n, so let us replace m (n - 1) with 
DFwit in the equation for swit

2 to obtain

swit
wit

wit

SS

DF
2 =

For the diet experiment, DFwit = m (n - 1) = 4 (7 - 1) = 
24 degrees of freedom.

Finally, recall that in Chapter 2 we defined the variance 
as the “average” squared deviation from the mean. In this 
spirit, statisticians call the ratio SSwit/DFwit the within 
groups mean square and denote it MSwit. This notation is 
clumsy, since SSwit/DFwit is not really a mean in the standard 
statistical meaning of the word and it obscures the fact that 
MSwit is the estimate of the variance computed from within 

the groups (that we have been denoting swit
2 ).

 
Nevertheless, 

it is so ubiquitous that we will adopt it. Therefore, we will 
estimate the variance from within the sample groups with

MS =
SS

DFwit
wit

wit

We will replace swit
2

in the definition of F with this 
expression.

For the data in Table 9-1,

MS L/mwit = =3 825

24
0 159 2.

. ( in)

Next, we need to do the same thing for the variance esti-
mated from between the treatment groups. Recall that we 
estimated this variance by computing the standard deviation 
of the sample means as an estimate of the standard error 
of the mean, then estimated the population variance with

s ns
Xbet

2 2=

The square of the standard deviation of treatment 
means is

s
X X X X X X X X

mX
2 1

2
2

2
3

2
4

2

1
=

− + − + − + −
−

( ) ( ) ( ) ( )

in which m again denotes the number of treatment groups 
(4) and X denotes the means of all the observations 
(which also equals the mean of the sample means when 
the samples are all the same size). We can write this equa-
tion more compactly as

s

X X

mX

t
t2

2

1
=

−

−

∑( )

so that

s

n X X

m

t
t

bet
2

2

1
=

−

−

∑( )

(Notice that we are now summing over treatments rather 
than experimental subjects.) 

The between groups variance can be written as the sum 
of squared deviations of the treatment means about the 
mean of all observations times the sample size divided by 
m - 1. Denote this sum of squares the between groups or 
treatment sum of squares

SS = SSbet treat = −∑n X Xt
t

( )2
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The treatment sum of squares is a measure of the vari-
ability between the groups, just as the within groups sum 
of squares is a measure of the variability within the 
groups.

For the data for the diet experiment in Table 9-1

SStreat = −

= − + −

∑n X Xt
t

( )

[( . . ) ( . .

2

27 4 96 4 98 5 23 4 988 4 93 4 98

4 80 4 98 0 685

2 2

2

) ( . . )

( . . ) ] .

+ −
+ − = (L/min))2

The treatment (between groups) variance appears in the 
numerator of the F ratio and is associated with v = m - 1 
degrees of freedom; we therefore denote m - 1 with

DF = DFbet treat = −m 1

in which case

sbet
2 bet

bet

treat

treat

SS

DF

SS

DF
= =

Just as statisticians call the ratio SSwit the within 
groups mean square, they call the estimate of the variance 
from between the groups (or treatments) the between 
groups (or treatment) mean square MStreat (or MSbet). 
Therefore,

MS =
SS

DF
=

SS

DF
= MSbet

bet

bet

treat

treat
treat

For the data in Table 9-1, DFtreat = m - 1 = 4 - 1 = 3, so

MS (L/min)bet = =0 685

3
0 228 2.

.

We can write the F test statistic as

F = =
MS

MS

MS

MS
bet

wit

treat

wit

and compare it with the critical value of F for numerator 
degrees of freedom, DFtreat (or DFbet), and denominator 
degrees of freedom, DFwit.

Finally, for the data in Table 9-1

F =
MS

MS
treat

wit

= =.

.
.

228

159
1 4

the same value of F we obtained from these data in 
Chapter 3.

We have gone far a field into a computational proce-
dure that is more complex and, on the surface, less intui-
tive than the one developed in Chapter 3. This approach 
is necessary, however, to analyze the results obtained in 
more complex experimental designs. Surprisingly as we 
will see, there are intuitive meanings which can be 
attached to these sums of squares and which are very 
important.

Accounting for All the Variability �
in the Observations
The sums of squares within and between the treatment 
groups, SSwit and SStreat, quantify the variability observed 
within and between the treatment groups. In addition, it 
is possible to describe the total variability observed in the 
data by computing the sum of squared deviations of all 
observations about the grand mean X of all the observations, 
called the total sum of squares

SStot = −∑∑ ( )X Xts
st

2

The two summation symbols indicate the sums over 
all subjects in all treatment groups. The total number 
of degrees of freedom associated with this sum of 
squares is DFtot = mn - 1, or 1 less than the total sam-
ple size (m treatment groups times n subjects in each 
treatment group). For the observations in Table 9-1, 
SS (L/min) and DFtot

2
tot= = − =4 507 4 7 1 27. ( ) .

Notice that the variance estimated from all the obser-
vations, without regard for the fact that there are different 
experimental groups, is just

( )X X

mn mn

ts
st

−

−
=

−

∑∑ 2

1 1

SStot

The three sums of squares discussed so far are related 
in a very simple way:

The total sum of squares is the sum of the between 
groups (treatment) sum of squares and the within 
groups sum of squares.

SS = SS + SStot bet wit

In other words, the total variability, quantified with 
appropriate sums of squared deviations, can be parti-
tioned into two components, one due to variability 
between the experimental groups and another component 
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due to variability within the groups.* It is common to 
summarize all these computations in an analysis of vari-
ance table such as Table 9-3. Notice that the between 
groups and within groups sums of squares do indeed add 
up to the total sum of squares.

F is the ratio of MSbet over MSwit and should be com-
pared with the critical value of F with DFbet and DFwit 
degrees of freedom for the numerator and denominator, 
respectively, to test the hypothesis that all the samples 
were drawn from a single population.

Note also that the treatment and within groups degrees 
of freedom also add up to the total number of degrees of 
freedom. This is not a chance occurrence; it will always be 
the case. Specifically, if there are m experimental groups 
with n members each,

DF DF DFbet wit tot= − = − = −m m n mn1 1 1; ( );

so that

DF DF
DF

bet wit

to

+ = − + −
= − + − = − =

( ) ( )m m n
m mn m mn

1 1
1 1 tt

In other words, just as it was possible to partition the 
total sum of squares into components due to between 
group (treatment) and within group variability, it is pos-
sible to partition the degrees of freedom. Figure 9-4 
illustrates how the sums of squares and degrees of free-
dom are partitioned in this analysis of variance.

Now we are ready to attack the original problem, that 
of developing an analysis of variance suitable for experi-
ments in which each experimental subject receives more 
than one treatment.

  �EXPERIMENTS WHEN SUBJECTS ARE 
OBSERVED AFTER MANY TREATMENTS: 
REPEATED MEASURES ANALYSIS �
OF VARIANCE

When each experimental subject receives more than one 
treatment it is possible to partition the total variability in 
the observations into three mutually exclusive components: 
variability between all the experimental subjects, the vari-
ability due to the treatments, and the variability within the 
subjects’ response to the treatments. The last component of 
variability represents the fact that there is some random 
variation in how a given individual responds to a given 
treatment as well as measurement errors. Figure 9-5 shows 

*To see why this is true, first decompose the amount that any given ob-
servation deviates from the grand mean, X Xts - , into two components, 
the deviation of the treatment group mean from the grand mean and the 
deviation of the observation from the mean of its treatment group.

( ) ( ) ( )X X X X X Xts t ts t− = − + −

Square both sides

( ) ( ) ( ) ( )( )X X X X X X X X X Xts t ts t ts t− = − + − + − −2 2 2 2

and sum over all observations to obtain the total sum of squares
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Since ( )X Xt - does not depend on which of the n individuals in each 
sample are being summed over,

( ) ( )X X n X Xt
s

t− = −∑ 2 2

The first term on the right of the equals sign can be written as

( ) ( )X X n X Xt
tst

1
2 2− = −∑∑∑

which is just SSbet. Furthermore, the second term on the right of the 
equals sign is just SSwit.

It only remains to show that the third term on the right of the equals 
sign equals zero. To do this, note again that X Xt - does not depend on 
which member of each sample is being summed, so we can factor it out 
of the sum over the member of each sample, in which case

2 2( )( ) ( ) ( )X X X X X X X Xt ts t t ts t
stst

− − = − −∑∑∑∑

But X t is the mean of the n members of treatment group t, so
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= − =n X Xt t( ) 0

Therefore,

SS SS SS SS SStot bet wit bet wit= + + = +0

  �TABLE 9-3. Analysis of Variance Table for the 
Diet Experiment

Source of Variation 	 SS DF 	 MS

Between groups 0.685 3 0.228
Within groups 3.822 24 0.159

 T otal 4.507 27

F=
MS

MS
bet

wit

= =0.228
0.159

1.4
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this breakdown. The resulting procedure is called a repeated 
measures analysis of variance because the measurements 
are repeated under all the different experimental condi-
tions (treatment) in each of the experimental subjects.*

Now, let us write expressions for these three kinds of 
variability. As Figure 9-5 suggests, the first step is to divide 
the total variability into variability within subjects and 
between subjects.

Table 9-4 illustrates the notation we will use for 
repeated measures analysis of variance. (In this case, it is 
for an experiment in which four experimental subjects 
each receive three different treatments). At first glance, 
this table appears quite similar to Table 9-2, used to ana-
lyze experiments in which different subjects received each 
of the treatments. There is one important difference: in 
Table 9-4 the same subjects receive all the treatments. For 
example, X11 represents how the first experimental subject 
responded to the first treatment; X21 represents how the 
(same) first experimental subject responded to the second 

DFbet = DFtreat = m – 1

SSbet = SStreat

DFwit = m(n – 1)

DFtot = mn – 1

FIGURE 9-4. Partitioning of the sums of squares and 
degrees of freedom for a one-way analysis of variance.

*This chapter discusses one-way repeated measures analysis of variance, 
the simplest case. Just as the one-way analysis of variance could be gen-
eralized to two-way (and higher) analysis of variance, the one-way 
repeated measures analysis of variance presented in this chapter forms the 
basis for more general two-way (and higher) repeated measures analyses 
of variance. Two-way repeated measures analyses of variance are common 
in biomedical research in areas such as drug trials, for example, when one 
factor is the presence or absence of drug (and time after administering the 
drug) as one factor and gender as another factor. As in non-repeated mea-
sures analysis of variance, one can then test for the effects of the drug 
controlling for gender, gender controlling for the drug, and the drug × 
gender interaction (when different genders react differently to the drug). 
For a detailed discussion of two-way repeated measures designs, see  
Glantz SA, Slinker B. Primer of Applied Regression and Analysis of Vari-
ance, 2nd ed. New York: McGraw-Hill; 2001 for details on how to analyze 
two-way and higher-order repeated measures analyses of variance.

DFtreat = m – 1

DFwit subj = n(m – 1)

SSbet subj SSwit subj

SStot

DFbet subj = n – 1

DFtot = mn – 1

SStreat
SSres

DFres = (n – 1)(m – 1)

FIGURE 9-5. Partitioning of the sums of squares and 
degrees of freedom for a one-way repeated measures 
analysis of variance. Notice that this procedure allows us to 
concentrate on the variation within experimental subjects.
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treatment. In general, Xts is the response of the sth experi-
mental subject to the t th treatment.

S S S S1 2 3 4, , , and are the mean responses of each of 
the four subjects to all (three) treatments

S

X

m
s

ts
t=

∑

in which there are m = 3 treatments. Likewise,T T1 2, , and
T 3 and are the mean responses to each of the three treat-
ments of all (four) experimental subjects.

T

X

n
t

ts
s=

∑

in which there are n = 4 experimental subjects.
As in all analyses of variance, we quantify the total 

variation with the total sum of squared deviations of all 
observations about the grand mean. The grand mean of 
all the observations is

X

X

mn

ts
st=

∑∑

and the total sum of squared deviations from the grand 
mean is

SStot = −∑∑ ( )X Xts
st

2

This sum of squares is associated with DFtot = mn - 1 
degrees of freedom.

Next, we partition this total sum of squares into varia-
tion within subjects and variation between subjects. The 
variation of observations within subject 1 about the mean 
observed for subject 1, S1, is

SSwit subj 1 = −∑( )X St
t

1 1
2

Likewise, the variation in observations within subject 
2 about the mean observed in subject 2 is

SSwit subj 2 = −∑( )X St
t

2 2
2

We can write similar sums for the other two experi-
mental subjects. The total variability observed within all 
subjects is just the sum of the variability observed within 
each subject

SS SS + SS + SSwit subjs wit subj 1 wit subj 2 w= iit subj 3 wit subj 4+ SS

= −∑∑ ( )X Sts s
st

2

Since the sum of squares within each subject is asso-
ciated with m - 1 degrees of freedom (where m is 
the number of treatments) and there are n subjects, 
SSwit subjs is associated with DFwit subjs = n (m - 1) degrees 
of freedom.

  �TABLE 9-4. Notation for Repeated Measures Analysis of Variance

Treatment, m = 3 Subject

Experimental Subject, n = 4 	1 	2 	3 Mean 	 SS

	 1 X11 X21 X31 	 S1 ( )Xt
t

1 1
2−∑ S

	 2 X12 X22 X32 	 S2 ( )Xt
t

1 2
2−∑ S

	 3 X13 X23 X33 	 S3 ( )Xt
t

3 3
2−∑ S

	 4 X14 X24 X34 	 S4 ( )Xt
t

4 4
2−∑ S

Treatment mean T1 T2 T 3

Grand mean X =
∑∑ X

mn

ts
at SStot

2= = −∑∑ ( )X Xts
st
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The variation between subjects is quantified by com-
puting the sum of squared deviations of the mean 
response of each subject about the grand mean

SSbet subjs = −∑m S Xs
t

( )2

The sum is multiplied by m because each subject’s mean 
is the mean response to the m treatments. (This situation 
is analogous to the computation of the between-groups 
sum of squares as the sum of squared deviations of the 
sample means about the grand mean in the analysis  
of variance developed in the last section.) This sum of 
squares has DFbet subjs = n - 1 degrees of freedom.

It is possible to show that

SS = SS + SStot wit subjs bet subjs

that is, that the total sum of squares can be partitioned 
into the within and between subjects sums of squares.*

Next, we need to partition the within subjects sum of 
squares into two components, variability in the observa-
tions due to the treatments and the residual variation due 
to random variation in how each individual responds to 
each treatment. The sum of squares due to the treatments 
is the sum of squared differences between the treatment 
means and the grand mean:

SStreat = −∑n T Xt
t

( )2

We multiply by n, the number of subjects used to compute 
each treatment mean, just as we did above when comput-
ing the between-subjects sum of squares. Since there are 
m different treatments, there are DFtreat = m - 1 degrees of 
freedom associated with SStreat.

Since we are partitioning the within subjects sum of 
squares into the treatment sum of squares and the residual 
sum of squares,

SS SS SSwit subjs treat res= +

and so

SS SS SSres wit subjs treat= −

The same partitioning for the degrees of freedom 
yields

DF DF DFres wit subjs treat= −

= − − − = −n m m n( ) ( ) (1 1 1))( )m −1

Finally, our estimate of the population variance from 
the treatment sum of squares is

MS
SS

DFtreat
treat

treat

=

and the estimate of the population variance from the 
residual sum of squares is

MS
SS

DFres
res

res

=

If the null hypothesis that the treatments have no effect 
is true, MStreat and MSres are both estimates of the same 
(unknown) population variance, so compute

F =
MS

MS
treat

res

to test the null hypothesis that the treatments do not 
change the experimental subjects. If the hypothesis of no 
treatment effect is true, this F ratio will follow the F distri-
bution with DFtreat numerator degrees of freedom and 
DFres denominator degrees of freedom.

This development has been, by necessity, more math-
ematical than most of the explanations in this book. Let 
us apply it to a simple example to make the concepts more 
concrete.

Anti-asthmatic Drugs and Endotoxins
Endotoxin is a component of Gram-negative bacteria 
found in dust in both workplaces and homes. Inhaling 
endotoxin causes fever, chills, bronchoconstriction of 
airways in the lungs, and generalized bronchial hyper-
responsiveness (wheezing). Prolonged endotoxin expo-
sure is associated with chronic obstructive pulmonary 
disease and asthma. Olivier Michel and colleagues† 
thought that the anti-asthmatic drug, salbutamol, might 

*For a derivation of this equation, see Winer BJ, Brown DR, Michels KM. 
Single-factor experiments having repeated measures on the same ele-
ments. Statistical Principles in Experimental Design, 3ed ed. New York: 
McGraw-Hill; 1991:chap 4.

†Michel O, Olbrecht J, Moulard D, Sergysels R. Effect of anti-asthmatic 
drugs on the response to inhaled endotoxin. Ann. Allergy Asthma Im-
munol. 2000;85:305–310.
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protect against the endotoxin-induced inflammation 
that produces these symptoms. To test this hypothesis, 
they had four mildly asthmatic people breathe an aero-
sol containing a purified form of endotoxin and mea-
sured how many liters of air they could exhale in 1 
second. This variable, known as forced expiratory vol-
ume in 1 second or FEV1, is a measure of airway con-
striction. A decrease in FEV1 indicates a higher degree of 
bronchoconstriction. They took three FEV1 measure-
ments in each person: baseline (before breathing the 
endotoxin), 1 hour  following endotoxin inhalation, and 
2 hours after each subject received an additional salbu-
tamol treatment.

Figure 9-6 shows the results of this experiment. Simply 
looking at Figure 9-6 suggests that salbutamol increases 
FEV1, but there are only four people in the study. How 
confident can we be when asserting that the drug actually 
reduces bronchial constriction and makes it easier to 
breathe? To answer this question, we perform a repeated 
measures analysis of variance.

Table 9-5 shows the same data as Figure 9-6, together 
with the mean FEV1 observed for each of the n = 4 exper-
imental subjects (people) and each of the m = 3 treat-
ments (baseline, 1 hour, and 2 hours). For example, 
subject 2’s mean response of subject 2 to all three treat-
ments is

S2 L= + + =4 0 3 7 4 4

3
4 03

. . .
.

and the mean response of all four subjects to treatment 1 
(baseline) is

T 1 L= + + + =3 70 4 03 3 0 3 17

4
3 48

. . . .
.

The grand mean of all observations is X = 3.48 L and 
the total sum of squares is SStot = 2.6656 L2.

Table 9-5 also includes the sum of squares within each 
subject; for example, for subject 2

SSwit subj 2 = − + − + −( . ) ( . . ) ( . .4 4 03 3 7 4 03 4 4 4 02 2 33

0 2467

2)

.= L2

Adding the within subjects sums of squares for the 
four subjects in the study yields

SSwit subjs = + + +

=

0 1800 0 2467 0 0800 0 1267

0 6

. . . .

. 3334 L2

We obtain sum of squares between subjects by adding 
up the squares of the deviations between the subjects’ 
means and the grand mean and multiplying by the num-
bers of treatments (m = 3, the number of observations 
used to compute each subject’s mean response)

SSbet subjs = − + −
+

3 3 70 3 48 4 03 3 48

3

2 2[( . . ) ( . . )

( .000 3 48 3 17 3 48

2 0322

2 2− + −
=

. ) ( . . ) ]

. L2

(Note that SSwit subjs + SSbet subjs = 0.6334 + 2.0322 = 2.6656 
L2, the total sum of squares, as it should.)

We obtain the sum of squares for the treatments by 
multiplying the squares of the differences between the 
treatment means and the grand mean times the number 
of subjects (n = 4, the number of numbers used to com-
pute each mean):

SStreat = − + − + −4 3 48 3 48 3 20 3 48 3 75 32 2[( . . ) ( . . ) ( . .. ) ]

.

48

0 6051

2

2= L

FIGURE 9-6. Forced expiratory volume at 1 second (FEV1) in 
four people at baseline, 1 hour after inhaling endotoxin, 
and 2 hours following endotoxin and salbutamol exposure. 
Each individual’s response is connected by straight lines. 
(Adapted from Table 2 and Fig. 4 of Michel O, Olbrecht J, 
Moulard D, Sergysels R. Effect of anti-asthmatic drugs on 
the response to inhaled endotoxin. Ann Allergy Asthma 
Immunol. 2000;85:305–310.)
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There are DFtreat = m - 1 = 3 - 1 = 2 degrees of freedom 
associated with the treatments. 

Finally, the residual sum of squares is

SS SS SSres wit subjs treat= − = − =0 6334 0 6051 0 0. . . 2283 L2

with

DFres = (n - 1) (m - 1) = (4 - 1) (3 - 1)= 6

degrees of freedom.
Table 9-6, the analysis of variance table for this experi-

ment, summarizes the results of all these calculations. 
Notice that we have partitioned the sums of squares into 
more components than we did in Table 9-3. (Compare 
these two tables with Figures 9-4 and 9-5.) We are able to 
do this because we made repeated measurements on the 
same experimental subjects.

From Table 9-6, our two estimates of the population 
variance are

MS =
SS

DF
Ltreat

treat

treat

2= =0 6051

2
0 3026

.
.

and

MS =
SS

DF
Lres

res

res

2= =0 0283

6
0 0047

.
.

so our test statistic is

F
S

S
= = =

M

M
treat

res

0 3026

0 0047
64 38

.

.
.

This value exceeds F.01 = 10.92, the critical value that 
defines the largest 1% of possible values of F with 2 and 6 
degrees of freedom for the numerator and denominator. 
Therefore, these data permit concluding that endotoxin 
and salbutamol alter FEV1 (P < .01).

So far we can conclude that at least one of the treat-
ments produced a change. To isolate which one, we need 

  �TABLE 9-5. Forced Expiratory Volume (L) at One Second before and after Bronchial Challenge with Endotoxin 
and Salbutamol Treatment

Person (Subject)
	 No Drug  
(Baseline)

	One Hour after  
	 Endotoxin

Two Hours after Endotoxin  
	 and Salbutamol

Subject 

Mean 	 SS

	 1 3.7 3.4 4.0 3.70 0.1800
	 2 4.0 3.7 4.4 4.03 0.2467
	 3 3.0 2.8 3.2 3.00 0.0800
	 4 3.2 2.9 3.4 3.17 0.1267
Treatment mean 3.48 3.20 3.75

Grand mean = 3.48 SStot = 2.6656 L2

  �TABLE 9-6. Analysis of Variance Table for One-Way Repeated Measures Analysis of FEV1 in Endotoxin Response

Source of Variation 	 SS DF 	 MS

Between subjects 2.0322 3
Within subjects 0.6334 8
Treatments 0.6051 2 0.3026
Residual 0.0283 6 0.0047

Total 2.6656 11

F =
MS

MS
treat

treat

= 0.3026
0.0047

= 64.038
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to use a multiple-comparisons procedure analogous to the 
Holm t test (or Holm-Sidak test or Bonferroni t test) 
developed in Chapter 4.

How to Isolate Differences in Repeated �
Measures Analysis of Variance
In Chapter 4 we conducted multiple pairwise compari-
sons between groups with the Holm-Sidak t test.

t
X X

s

n

s

n

i= −

+

2

2

1

2

2

wit wit

To use the Holm-Sidak t test to isolate differences fol-
lowing a repeated measures analysis of variance, we sim-
ply replace swit

2
with our estimate of the variance computed 

from the residual sum of squares, MSres:

t
T T

n n

i j

j

= −

+
MS MSres res

1 2

in whichT i andT j represent the mean treatment responses 
of the pair of treatments (treatments i and j ) you are com-
paring. The resulting value of t is compared with the crit-
ical value for DFres degrees of freedom.

There are three comparisons (k = 3) for this experiment. To 
compare FEV1 1 hour following endotoxin to FEV1 2 hours 
following endotoxin and salbutamol exposure, compute

t = −

+
= −3 20 3 75

2

0047

2

11 346
. .

.
.

.0047

To compare baseline FEV1 to FEV1 2 hours following 
endotoxin and salbutamol exposure

t = −

+
= −3 48 3 75

2

0047

2

5 570
. .

.
.

.0047

Finally, to compare baseline FEV1 with FEV1 1 hour 
following endotoxin exposure

t = −

+
= −3 48 3 20

2

0047

2

5 776
. .

.
.

.0047

There are 6 degrees of freedom for these comparisons. 
The uncorrected P values corresponding to these three 
comparisons are less than .0001, .001, and .001.

To keep the overall risk of erroneously reporting a dif-
ference for this family of three comparisons below 5%, we 
compare these P values to the Holm-Sidak t test critical 
P values based on k = 3: Pcrit = 1 - (1 - αT)1/(k-j  +1), 1 - 
(1 - .05)1/(3-1+1)  = .0170,  1 - (1 - .05)1/(3-2+1)  =  .0253 and 
1 - (1 - .05)1/(3-3+1)  = .0500. All three of the uncorrected P 
values fall below the appropriate critical P. These results allow 
us to conclude that endotoxin decreases FEV1 and that sub-
sequent administration of salbutamol reversed this effect, 
increasing FEV1 to levels higher than baseline.

Power in Repeated Measures �
Analysis of Variance
Power is computed exactly as in a simple analysis of vari-
ance, using the within subjects variation (estimated by 

MSres ) as the estimate of population standard deviation, 
σ, and the number of subjects in place of the sample size 
of each group, n.

  �EXPERIMENTS WHEN OUTCOMES ARE 
MEASURED ON A NOMINAL SCALE: 
McNEMAR’S TEST

The paired t  test and repeated measures analysis of vari-
ance can be used to analyze experiments in which the vari-
able being studied can be measured on an interval scale 
(and satisfies the other assumptions required of parametric 
methods). What about experiments, analogous to the ones 
in Chapter 5, in which outcomes are measured on a nomi-
nal scale? This problem often arises when asking whether or 
not an individual responded to a treatment or when com-
paring the results of two different diagnostic tests that are 
classified as positive or negative in the same individuals. We 
will develop a procedure to analyze such experiments, 
McNemar’s test for changes, in the context of one such study.

p7 Antigen Expression in Human �
Breast Cancer
The p7 antigen has been shown to be expressed in cell lines 
derived from ovarian cancers but not in cell lines derived 
from normal tissues. In addition, expression of this antigen 
has been increased in ovarian cancer cells after treatment 
with chemotherapeutic agents. Since there are similarities 
between ovarian and breast cancer, Xiaowei Yang and  
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colleagues* wanted to study whether this antigen is present 
in tumor cells from women with breast cancer. They also 
wanted to investigate how treatment with radiation or 
chemotherapy affects appearance of p7, since presence of 
this antigen in a substantial fraction of breast cancer tumor 
cells has been associated with distant metastases and local 
recurrences. To investigate whether radiation and chemo-
therapy affected the expression of p7, they took tissue 
samples from women with breast cancer before and after 
they were treated and used several molecular biology tech-
niques to test for the presence of p7.

Table 9-7 shows that four women had p7 both before 
and after treatment, none had p7 present before but not 
after treatment, 12 women who did not have p7 present 
before treatment but had it afterwards, and 14 had p7 
neither before nor after treatment.

This table looks very much like the 2 × 2 contingency 
tables analyzed in Chapter 5. In fact, most people simply 
compute a χ2 statistic from these data and look the P value 
up in Table 5-7. The numbers in Table 9-7 are associated 
with a value of χ2 = 2.165 (computed including the Yates 
correction for continuity). This value is well below 3.841, 
the value of χ2 that defines the largest 5% of possible val-
ues of χ2 with 1 degree of freedom. As a result, one might 
report “no significant difference” in the expression of p7 
before and after treatment of breast cancer and conclude 
that treatment has no effect on the likelihood of tumor 
recurrence or metastasis.

There is, however, a serious problem with this approach. 
The χ2 test statistic developed for contingency tables in 
Chapter 5 was used to test the hypothesis that the rows and 
columns of the tables are independent. In Table 9-7, the rows 

and columns are not independent because they represent 
the p7 status of the same individuals before and after can-
cer treatment. (This situation is analogous to the differ-
ence between the unpaired t test presented in Chapter 4 
and the paired t test presented earlier in this chapter.) In 
particular, the 4 women who were positive for p7 both 
before and after treatment and the 14 who were negative 
both before and after treatment do not tell you anything 
about whether or not breast cancer tumor cells change 
expression of p7 in response to radiation or chemother-
apy. We need a statistical procedure that focuses on the 12 
women who were negative before treatment and positive 
after treatment and the fact that there were no women 
positive before and negative after treatment.

If there was no effect of the treatment on p7 expres-
sion, we would expect half the 0 + 12 = 12 women whose 
p7 status condition before and after treatment was differ-
ent. In particular, we would expect 12/2 = 6 to have been 
positive before treatment but not after and 6 to have been 
negative before but positive after treatment. Table 9-7 
shows that the observed number of women who fell into 
each of these two categories was 0 and 12, respectively. To 
compare these observed and expected frequencies, we can 
use the χ2 test statistic to compare these observed frequen-
cies with the expected frequency of 12/2 = 6.

χ2
1

2
2

1
2

2 1
2

2

0

0 6

6

12 6

6

=
− −

=
− −

+
− −

∑( )

( ) ( )

� �

� � � �

E

E

== 10 083.

Notice that this computation of χ2 includes the Yates cor-
rection for continuity because it has only 1 degree of free-
dom.

This value exceeds 7.879, the value of χ2 that defines 
the biggest 0.5% of the possible values of χ2 with 1 degree 
of freedom (from Table 5-7) if the differences in observed 
and expected were simply the effects of random sampling. 
This analysis leads to the conclusion that there is a 
difference in expression of p7 in breast cancer tumor 
cells after women are treated with radiation and chemo-
therapy (P < .005). This conclusion could have implica-
tions for the prognosis of these women as well as making 
p7 a potential target for antibody-based treatments or 
other types of target-based approaches.

This example illustrates that it is entirely possible to 
compute values of test statistics and look up P values in 
tables that are meaningless when the experimental 

*Yang X, Groshen S, Formenti SC, Davidson N, Press MF. P7 antigen 
expression in human breast cancer. Clin Cancer Res. 2003;9:201–206.

  �TABLE 9-7. Presence of p7 Antigen in Breast 
Cancer Tumor Cells Before and After Women are 
Treated with Radiation and Chemotherapy

	 After

Before Positive Negative

Positive 4 0
Negative 12 14
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design and underlying populations are not compatible 
with the assumptions used to derive the statistical proce-
dure.

In sum, McNemar’s test for changes consists of the fol-
lowing procedure:

•	 Ignore individuals who responded the same way to both 
treatments.

•	 Compute the total number of individuals who responded 
differently to the two treatments.

•	 Compute the expected number of individuals who 
would have responded positively to each of the two 
treatments (but not the other) as half the total number 
of individuals who responded differently to the two 
treatments.

•	 Compare the observed and expected number of indi-
viduals that responded to one of the treatments by com-
puting a χ2 test statistic (including Yates correction for 
continuity).

•	 Compare this value of χ2 with the critical values of the χ2 
distribution with 1 degree of freedom.

This procedure yields a P value that quantifies the prob-
ability that the differences in treatment response are due to 
chance rather than actual differences in how the two treat-
ments affect the same individuals.

  PROBLEMS

9-1 Several epidemiological studies have shown that peo-
ple who have a diet high in flavenols (which are in tea, 
wine, cocoa products and various fruits) have lower rates 
of dying from coronary artery disease. To investigate 
whether this effect of flavinols is mediated, at least in 
part, by beneficial effects on the lining of arteries known 
as the vascular endothelium, Christian Heiss and col-
leagues* recorded how much arties expanded (dilated) in 
response to increases in the need for blood flow, a mea-
sure of endothelial health, in healthy people before and 
after one month on a diet high in flavenols (see Table 
9-8). Higher values of this so-called flow-mediated  
dilation (FMD) indicates healthier endothelium. Did  
the diet lead to changes in the level of flow-mediated 
dilation?

9-2 Secondhand tobacco smoke increases the risk of a 
heart attack. In order to investigate the mechanisms for 
this effect, C. Arden Pope III and his colleagues† studied 
whether breathing secondhand smoke affected auto-
nomic (reflex) nervous system control of the heart. At 
rest the heart beats regularly, about once a second, but 
there are small beat-to-beat random fluctuations of the 
order of 100 milliseconds (.1 second) superimposed on 
the regular interval between heartbeats. This random 
fluctuation in the length of time between heartbeats is 
known as heart rate variability and quantified as the stan-
dard deviation of interbeat intervals over many beats. For 
reasons that are not fully understood, reductions in this 
heart rate variability are associated with increased risk of 
an acute heart attack. Pope and his colleagues measured 
heart rate variability in eight healthy young adults before 
and after they spent 2 hours sitting in the smoking lounge 
at the Salt Lake City Airport. Table 9-9 shows the obser-
vations on the standard deviation of the length of time 
between beats (in millisecond) measured over the 2 hours 
before and immediately after sitting in the smoking 
lounge. Did sitting in the smoking lounge reduce heart 
rate variability?

*Heiss C, et al. Improvement of endothelial function with dietary flavinols 
is associated with mobilization of circulating angiogenic cells in patients 
with coronary artery disease. J Am Coll Cardiol. 2010;56:218–224.

  �TABLE 9-8. Flow Mediated Dilation

Person Before Diet After Diet

1 3.0 5.0
2 3.7 4.0
3 5.0 3.8
4 7.2 9.5
5 5.0 8.1
6 3.3 6.1
7 4.8 6.1
8 3.3 4.9
9 3.8 4.9

10 2.2 4.0
11 4.0 4.1
12 4.0 5.0
13 7.0 7.2
14 7.2 7.3

†Pope CA III, et al. Acute exposure to environmental tobacco smoke and 
heart rate variability. Environ Health Perspect. 2001;109:711–716.
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9-3 What are the chances of detecting a halving of the 
heart rate variability in Problem 9-2 with 95% confidence? 
Note that the power chart in Figure 6-9 also applies to the 
paired t test.

9-4 Rework Problem 9-2 as a repeated measures analysis 
of variance. What is the arithmetic relationship between F 
and t  ?

9-5 In addition to measuring FEV1 (the experiment 
described in conjunction with Fig. 9-6), Michel and col-
leagues took measurements of immune response in their 
subjects, including measuring the amount of C-reactive 
protein (CRP), a protein that is elevated when tissue is 
inflamed. Their results are shown in Table 9-10. Did endo-
toxin by itself or the combination of endotoxin and salbu-
tamol affect CRP levels? If so, are the effects the same 1 
and 2 hours after giving the bronchial challenge? 

9-6 In general, levels of the hormone testosterone decrease 
during periods of stress. Because physical and psycholog-
ical stressors are inevitable in the life of soldiers, the 
military is very interested in assessing stress response in 
soldiers. Many studies addressing this issue suffer from 
taking place in a laboratory setting, which may not accu-
rately reflect the real world stresses on a soldier. To inves-
tigate the effects of stress on testosterone levels in a more 
realistic setting, Charles Morgan and colleagues* mea-
sured salivary testosterone levels in 12 men before and 
during a military training exercise. The exercise included 
simulated capture and interrogation modeled on Ameri-
can prisoner of war experiences during the Vietnam and 
Korean wars. Table 9-11 shows their data. What conclu-
sions can be drawn from these observations?

9-7 What is the power of the test in Problem 9-7 to find a 
100 mL change in food intake with 95% confidence?

9-8 In the fetus, there is a connection between the aorta 
and the artery going to the lungs called the ductus arterio-
sus that permits the heart to bypass the nonfunctioning 
lungs and circulate blood to the placenta to obtain oxygen 
and nourishment and dispose of wastes. After the infant is 
born and begins breathing, these functions are served by 
the lungs and the ductus arteriosus closes. Occasionally, 
especially in premature infants, the ductus arteriosus 
remains open and shunts blood around the lungs. This 
shunting prevents the infant from getting rid of carbon 
dioxide and taking in oxygen. The drug indomethacin has 
been used to make the ductus arteriosus close. It is very 

  �TABLE 9-9. Heart Rate Variability Before and 
After Spending Two Hours in a Smoking Lounge

Experimental Subject

Standard Deviation in  
Beat-to-Beat Period (ms)

Before After

Tom 135 105
Dick 118 95
Harry 98 80
Lev 95 73
Joaquin 87 70
Stan 75 60
Aaron 69 68
Ben 59 40

*Morgan C, et al. Hormone profiles in humans experiencing military 
survival training. Biol Psychiatry. 2000;47:89–1901.

  �TABLE 9-10. Effect of Endotoxin Exposure on C Reactive Protein (CRP)

CRP (mg/dL)

Person (Subject) No Drug (Baseline) One Hour after Endotoxin Two Hours after Endotoxin and Salbutamol

	 1 0.60 0.47 0.49
	 2 0.52 0.39 0.73
	 3 1.04 0.83 0.47
	 4 0.87 1.31 0.71
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  �TABLE 9-11. Testosterone Levels During Military Training for Capture and Interrogation

Testosterone (ng/dL)

Soldier
	 Beginning of  
Training Exercise Time of Capture

	 12 Hours  
Postcapture 48 Hours Postcapture

1 17.4 11.2 12.8 5.9
2 13.6 6.9 9.8 7.4
3 17.3 12.8 13.7 9.0
4 20.1 16.6 15.5 15.7
5 21.1 13.5 15.4 11.0
6 12.4 2.9 3.7 3.4
7 13.8 7.9 10.5 7.8
8 17.7 12.5 14.9 13.1
9 8.1 2.6 2.3 1.3

10 16.3 9.2 9.3 7.3
11 9.2 2.9 5.8 5.5
12 22.1 17.5 15.3 9.3

  �TABLE 9-12. Indomethacin and Closure of Ductus 
Arteriosis

Indomethacin

Improved
	 Not  
Improved

Placebo Improved
Not improved

65
27

13
40

  �TABLE 9-13. Indomethacin and Closure of Ductus 
Arteriosis (Alternative Presentation of Results)

Improved Not Improved

Indomethacin 	 92 	 53
Placebo 	 78 	 67

likely that the outcome (with or without drugs) depends 
on gestational age, age after birth, fluid intake, other ill-
nesses, and other drugs the infant is receiving. For these 
reasons, an investigator might decide to pair infants who 
are as alike as possible in each of these identified variables, 
and randomly treat one member of each pair with indo-
methacin or placebo, then judge the results as improved 
or not improved. The findings are as shown in Table 9-12. 
Do these data support the hypothesis that indomethacin 
is no better than a placebo?

9-9 The data in Problem 9-8 could also be presented in the 
following form as shown in Table 9-13. How would these 
data be analyzed? If this result differs from the analysis in 
Problem 9-9, explain why and decide which approach is 
correct.

9-10 Review all original articles published in the New Eng-
land Journal of Medicine during the last 12 months. How 
many of these articles present the results of experiments 
that should be analyzed with a repeated measures analysis 
of variance? What percentage of these articles actually did 
such an analysis? Of those that did not, how did the 
authors analyze their data? Comment on potential diffi-
culties with the conclusions that are advanced in these 
papers.
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10Alternatives to Analysis 
of Variance and the  
t test Based on Ranks

  �HOW TO CHOOSE BETWEEN 
PARAMETRIC AND �
NONPARAMETRIC METHODS

As already noted, analysis of variance is called a parametric 
statistical method because it is based on estimates of the 
two population parameters, the mean and standard devia-
tion (or variance), that completely define a normal distri-
bution. Given the assumption that the samples are drawn 
from normally distributed populations, one can compute 
the distributions of the F or t test statistics that will occur 
in all possible experiments of a given size when the treat-
ments have no effect. The critical values that define a value 
of F or t can then be obtained from that distribution. When 
the assumptions of parametric statistical methods are sat-
isfied, they are the most powerful tests available.

If the populations the observations were drawn from are 
not normally distributed (or are not reasonably compatible 
with other assumptions of a parametric method, such as 
equal variances in all the treatment groups), parametric 
methods become quite unreliable because the mean and 
standard deviation, the key elements of parametric statis-
tics, no longer completely describe the population. In fact, 
when the population substantially deviates from normality, 
interpreting the mean and standard deviation in terms of a 
normal distribution can produce a very misleading picture.

For example, recall our discussion of the distribution of 
heights of the entire population of Jupiter. The mean height 

Analysis of variance, including the t tests, is widely used 
to test the hypothesis that one or more treatments had 
no effect on the mean of some observed variable. All 
forms of analysis of variance, including the t tests, are 
based on the assumption that the observations are drawn 
from normally distributed populations in which the 
variances are the same even if the treatments change the 
mean responses. These assumptions are often satisfied 
well enough to make analysis of variance an extremely 
useful statistical procedure. On the other hand, experi-
ments often yield data that are not compatible with these 
assumptions. In addition, there are often problems in 
which the observations are measured on an ordinal scale 
rather than an interval scale and may not be amenable to 
an analysis of variance. This chapter develops analogs to 
the t tests and analysis of variance based on ranks of the 
observations rather than the observations themselves. 
This approach uses information about the relative sizes 
of the observations without assuming anything about 
the specific nature of the population they were drawn 
from.

We will begin with the nonparametric analog to the 
unpaired and paired t tests, the Mann-Whitney rank-
sum test, and Wilcoxon signed-rank test. Then we will 
present the analogs of one-way analysis of variance, the 
Kruskal-Wallis analysis of variance based on ranks, and 
the Friedman repeated measures analysis of variance based 
on ranks.
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of all Jovians is 37.6 cm in Figure 2-3A and the standard 
deviation is 4.5 cm. Rather than being equally distributed 
about the mean, the population is skewed toward taller 
heights. Specifically, the heights of Jovians range from 31 to 
52 cm, with most heights around 35 cm. Figure 2-3B shows 
what the population of heights would have been if, instead 
of being skewed toward taller heights, they had been nor-
mally distributed with the same mean and standard devia-
tion as the actual population (in Figure 2-3A). The heights 
would have ranged from 26 to 49 cm, with most heights 
around 37 to 38 cm. Simply looking at Figure 2-3 should 
convince you that envisioning a population on the basis of 
the mean and standard deviation can be quite misleading if 
the population does not, at least approximately, follow the 
normal distribution.

The same thing is true of statistical tests that are based 
on the normal distribution. When the population the 
samples were drawn from does not at least approximately 
follow the normal distribution, these tests can be quite 
misleading. In such cases, it is possible to use the ranks of 
the observations rather than the observations themselves 
to compute statistics that can be used to test hypotheses. 
By using ranks rather than the actual measurements it is 
possible to retain much of the information about the rela-
tive size of responses without making any assumptions 
about how the population the samples were drawn from 
is distributed. Since these tests are not based on the 
parameters of the underlying population, they are called 
nonparametric or distribution-free methods.* All the 
methods we will discuss require only that the distributions 
under the different treatments have similar shapes, but 
there is no restriction on what those shapes are.†

When the observations are drawn from normally dis-
tributed populations, the nonparametric methods in this 
chapter are about 95% as powerful as the analogous para-
metric methods. As a result, power for these tests can be 
estimated by computing the power of the analogous para-

metric test. When the observations drawn from popula-
tions that are not normally distributed, nonparametric 
methods are not only more reliable but also more power-
ful than parametric methods.

Unfortunately, you can never observe the entire popu-
lation. So how can you tell whether the assumptions such 
as normality are met, to permit using the parametric tests 
such as analysis of variance? The simplest approach is to 
plot the observations and look at them. Do they seem 
compatible with the assumptions that they were drawn 
from normally distributed populations with roughly the 
same variances, that is, within a factor of 2 to 3 of each 
other? If so, you are probably safe in using parametric 
methods. If, on the other hand, the observations are heav-
ily skewed (suggesting a population such as the Jovians in 
Fig. 2-3A) or appear to have more than one peak, you 
probably will want to use a nonparametric method. When 
the standard deviation is about the same size or larger 
than the mean and the variable can take on only positive 
values, this is an indication that the distribution is skewed. 
(A normally distributed variable would have to take on 
negative values.) In practice, these simple rules of thumb 
are often all you will need.

There are two ways to make this procedure more 
objective. The first is to plot the observations as a normal 
probability plot. A normal probability plot has a distorted 
vertical scale that makes normally distributed observa-
tions plot as a straight line (just as exponential functions 
plot as a straight line on a semilogarithmic graph). Exam-
ining how straight the line is will show how compatible 
the observations are with a normal distribution. One can 
also construct a c2 statistic to test how closely the observed 
data agree with those expected if the population is  
normally distributed with the same mean and standard 
deviation. Since in practice simply looking at the data is 
generally adequate, we will not discuss these approaches 
in detail.‡

Unfortunately, none of these methods is especially 
convincing one way or the other for the small sample sizes 
common in biomedical research, and your choice of 
approach (i.e., parametric versus nonparametric) often 
has to be based more on judgment and preference than 
hard evidence.

*The methods in this chapter are obviously not the first nonparametric 
methods we have encountered. The c2 for analysis of nominal data in 
contingency tables in Chapter 5, the Spearman rank correlation to ana-
lyze ordinal data in Chapter 8, and McNemar’s test in Chapter 9 are three 
widely used nonparametric methods.
†They also require that the distributions be continuous (so that ties are 
impossible) to derive the mathematical forms of the sampling distribu-
tions used to define the critical values of the various test statistics. In prac-
tice, however, the continuity restriction is not important, and the methods 
can be (and are) applied to observations with tied measurements.

‡For discussions and example of these procedures, see Zar JH. Assessing 
departures from the normal distribution. Biostatistical Analysis, 5th ed. 
Upper Saddle River, NJ: Prentice Hall; 2010:sec 6.6.
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One informal approach is to do the analysis with both 
the applicable parametric and nonparametric methods, 
then compare the results. If the data are from a normal 
population, then the parametric method should be more 
sensitive (and so provide a lower P value), whereas if there 
is substantial nonnormality then the nonparametric 
method should be more sensitive (and so provide the lower 
P value). If the data are only slightly nonnormal, the two 
approaches should give similar results.

Things basically come down to the following differ-
ence of opinion: Some people think that in the absence 
of evidence that the data were not drawn from a nor-
mally distributed population, one should use paramet-
ric tests because they are more powerful and more 
widely used. These people say that you should use a 
nonparametric test only when there is positive evi-
dence that the populations under study are not  
normally distributed. Others point out that the non-
parametric methods discussed in this chapter are 95% 
as powerful as parametric methods when the data are 
from normally distributed populations and more reli-
able when the data are not from normally distributed 
populations. They also believe that investigators 
should assume as little as possible when analyzing 
their data. They therefore recommend that nonpara-
metric methods be used except when there is positive 
evidence that parametric methods are suitable. At the 
moment, there is no definitive answer stating which 
attitude is preferable. And there probably never will be 
such an answer.

  �TWO DIFFERENT SAMPLES: 
THE MANN-WHITNEY RANK-SUM TEST

When we developed the analysis of variance, t test, and 
Pearson product-moment correlation, we began with a 
specific (normally distributed) population and exam-
ined the values of the test statistic associated with all 
possible samples of a given size that could be selected 
from that population. The situation is different for 
methods based on ranks rather than the actual observa-
tions. We will replace the actual observations with their 
ranks, then focus on the population of all possible com-
binations of ranks. Since all samples have a finite num-
ber of members, we can simply list all the different 
possible ways to rank the members to obtain the distri-
bution of possible values for the test statistic when the 
treatment has no effect.

To illustrate this process but keep this list relatively 
short, let us analyze a small experiment in which three 
people take a placebo and four people take a drug that is 
thought to be a diuretic. Table 10-1 shows the daily urine 
production observed in this experiment. Table 10-1 also 
shows the ranks of all the observations without regard to 
which experimental group they fall in; the smallest 
observed urine production is ranked 1 and the largest one 
is ranked 7. If the drug affected daily urine production, we 
would expect the rankings in the control group to  
be lower (or higher, if the drug decreased urine produc-
tion) than the ranks for the treatment group. We will use 
the sum of ranks in the smaller group (in this case, the 
control group) as our test statistic T. The control-group 
ranks add up to 9.

Is the value of T = 9 sufficiently extreme to justify 
rejecting the hypothesis that the drug had no effect?

To answer this question, we examine the population 
of all possible rankings of the seven observations divided 
into two groups, one with 3 individuals and one with 4, 
to see how likely we are to get a rank sum as extreme as 
that associated in Table 10-1. Notice that we are no lon-
ger discussing the actual observations but their ranks, so 
our results will apply to any experiment in which there 
are two samples, one containing three individuals and 
the other containing four individuals, regardless of the 
nature of the underlying populations.

We begin with the hypothesis that the drug did not 
affect urine production, so that the ranking pattern in 
Table 10-1 is just due to chance. To estimate the chances 

  TABLE 10-1. Observations in Diuretic Experiment

Placebo (Control) Drug (Treatment)

Daily Urine 
Production 
(mL/d) Rank*

Daily Urine 
Production (mL/d) Rank*

1000 1 1400 6
1380 5 1600 7
1200 3 1180 2

1220 4

T = 9

*1 = smallest; 7 = largest.
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  TABLE 10-2. Possible Ranks and Rank Sums for Three Individuals Out of Seven

Rank

1 2 3 4 5 6 7 Rank Sum T

X X X 6
X X X 7
X X X 8
X X X 9
X X X 10
X X X 8
X X X 9
X X X 10
X X X 11
X X X 10
X X X 11
X X X 12
X X X 12
X X X 13
X X X 14

X X X 9
X X X 10
X X X 11
X X X 12
X X X 11
X X X 12
X X X 13
X X X 13
X X X 14
X X X 15

X X X 12
X X X 13
X X X 14
X X X 14
X X X 15
X X X 16

X X X 15
X X X 16
X X X 17

X X X 18

of getting this pattern when the two samples were drawn 
from a single population, we need not engage in any 
fancy mathematics, we just list all the possible rankings 
that could have occurred. Table 10-2 shows all 35 differ 
ent ways the ranks could have been arranged with three 

people in one group and four in the other. The crosses 
indicate a person in the placebo group, and the blanks 
indicate a person in the treatment group. The right-hand 
column shows the sum of ranks for the people in the 
smaller (placebo) group for each possible combination 
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of ranks. Figure 10-1 shows the distribution of possible 
values of our test statistic, the sum of ranks of the 
smaller group T that can occur when the treatment has 
no effect. While this distribution looks a little like the t 
distribution in Figure 4-5, there is a very important dif-
ference. Whereas the t distribution is continuous and, in 
theory, is based on an infinitely large collection of possi-
ble values of the t test statistic, Figure 10-1 shows every 
possible value of the sum-of-ranks test statistic T.

Since there are 35 possible ways to combine the ranks, 
there is 1 chance in 35 of getting rank sums of 6, 7, 17, or 
18; 2 chances in 35 of getting 8 or 16; 3 chances in 35 of 
getting 9 or 15; 4 chances in 35 of getting 10, 11, 13, or 14; 
and 5 chances in 35 of getting 12. What are the chances of 
getting an extreme value of T ? There is a 2 35 057 5 7/ . . %= =  
chance of obtaining T = 6 or T = 18 when the treatment 
has no effect. We use these numbers as the critical values 
to define extreme values of T and reject the hypothesis of 
no treatment effect. Hence, the value of T = 9 associated 
with the observations in Table 10-1 is not extreme enough 
to justify rejecting the hypothesis that the drug has no 
effect on urine production.

Notice that in this case T = 6 and T = 18 correspond 
to P = .057. Since T can take on only integer values, P can 
take on only discrete values. As a result, tables of critical 
values of T present pairs of values that define the pro-
portion of possible values nearest traditional critical P 
values, for example, 5% and 1%, but the exact P values 
defined by these critical values generally do not equal 5% 
and 1% exactly. Table 10-3 presents these critical values. 
nS and nB are the number of members in the smaller and 
larger samples group. The table gives the critical values 
of T that come nearest defining the most extreme 5% 
and 1% of all possible values of T that will occur if the 
treatment has no effect, as well as the exact proportion 

of possible T values defined by the critical values. 
For example, Table 10-3 shows that 7 and 23 define  
the 4.8% most extreme possible values of the rank sum 
of the smaller of two sample groups T when nS = 3 and 
nB = 6.

The procedure we just described is the Mann-Whitney 
rank-sum test.* The procedure for testing the hypothesis 
that a treatment had no effect with this statistic is:

•	 Rank all observations according to their magnitude, a 
rank of 1 being assigned to the smallest observation. Tied 
observations should be assigned the same rank, equal to 
the average of the ranks they would have been assigned 
had there been no tie (i.e., using the same procedure as in 
computing the Spearman rank correlation coefficient in 
Chapter 8).

•	 Compute T, the sum of the ranks in the smaller sample. (If 
both samples are the same size, you can compute T from 
either one.)

•	 Compare the resulting value of T with the distribution 
of all possible rank sums for experiments with samples of 
the same size to see whether the pattern of rankings is 
compatible with the hypothesis that the treatment had  
no effect.

There are two ways to compare the observed value of T 
with the critical value defining the most extreme values 
that would occur if the treatment had no effect. The first 
approach is to compute the exact distribution of T by list-
ing all the possibilities, as we just did, then tabulate the 
results in a table such as Table 10-3. For experiments in 
which the samples are small enough to be included in 
Table 10-3 this approach gives the exact P value associated 
with a given set of experimental observations. For larger 

*There is an alternative formulation of this test that yields a statistic com-
monly denoted by U. U is related to T by the formula U = T − nS nB + nS

(nS + 1)/2, where ns is the size of the smaller sample (or either sample if 
both contain the same number of individuals). For a presentation of the 
U statistic, see Siegel S, Castellan NJ Jr. The Wilcoxon-Mann-Whitney U 
test. In: Nonparametric Statistics for the Behavioral Sciences, 2nd ed. New 
York: McGraw-Hill; 1988:sec 6.4. For a detailed derivation and discussion 
of the Mann-Whitney test as developed here, as well as its relationship to 
U, see Mosteller F, Rourke R. Ranking methods for two independent 
samples. Sturdy Statistics: Nonparametrics and Order Statistics. Reading, 
MA: Addison-Wesley; 1973:chap 3.

SUM OF RANKS IN SMALLER GROUP (T )

0 5 10 15 20

FIGURE 10-1. Sums of ranks in the smaller group for all 
possible rankings of seven individuals with three individuals 
in one sample and four in the other. Each circle represents 
one possible sum of ranks.
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experiments this exact approach becomes quite tedious 
because the number of possible rankings gets very large. 
For example, there are 184,756 different ways to rank two 
samples of 10 individuals each.

Second, when the large sample contains more than 
eight members, the distribution of T is very similar to the 
normal distribution with mean

µT
S S Bn n n

=
+ +( )1

2

and standard deviation

σT
S B S Bn n n n

=
+ +( )1

12

  TABLE 10-3. Critical Values (Two-Tailed) of the Mann-Whitney Rank-Sum Statistic T

Probability Levels Near

.05 .01

nS nB Critical Values P Critical Values P

3 4 6,18 .057
5 6,21 .036
5 7,20 .071
6 7,23 .048   6,24 .024
7 7,26 .033   6,27 .017
7 8,25 .067
8 8,28 .042   6,30 .012

4 4 11,25 .057 10,26 .026
5 11,29 .032 10,30 .016
5 12,28 .063
6 12,32 .038 10,34 .010
7 13,35 .042 10,38 .012
8 14,38 .048 11,41 .008
8 . . . . . . . . 12,40 .016

5 5 17,38 .032 15,40 .008
5 18,37 .056 16,39 .016
6 19,41 .052 16,44 .010
7 20,45 .048 17,48 .010
8 21,49 .045 18,52 .011

6 6 26,52 .041 23,55 .009
6 . . . . . . . . 24,54 .015
7 28,56 .051 24,60 .008
7 . . . . . . . . 25,59 .014
8 29,61 .043 25,65 .008
8 30,60 .059 26,64 .013

7 7 37,68 .053 33,72 .011
8 39,73 .054 34,78 .009

8 8 49,87 .050 44,92 .010

Computed from Table A-9 of Mosteller F, Rourke R. Sturdy Statistics: Nonparametrics and Order Statistics. Reading, MA: Addison-Wesley; 1973.
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in which nS is the size of the smaller sample.* Hence, we 
can transform T into the test statistic

z
T

T
T

T

=
− µ
σ

and compare this statistic with the critical values of the 
normal distribution that define the, say 5%, most extreme 
possible values. zT can also be compared with the t distri-
bution with an infinite number of degrees of freedom 
(Table 4-1) because it equals the normal distribution.

This comparison can be made more accurate by 
including a continuity correction (analogous to the Yates 
correction for continuity in Chapter 5) to account for the 
fact that the normal distribution is continuous whereas 
the rank sum T must be an integer

z
T

T
T

T

=
− −µ

σ

1
2

  �USE OF A CANNABIS-BASED MEDICINE 
IN PAINFUL DIABETIC NEUROPATHY

Diabetic neuropathy is a painful consequence of diabetes 
mellitus in which peripheral nerves are damaged, probably 

because of damage diabetes does to the small blood vessels 
that supply the nerves. The symptoms vary depending on the 
specific manifestation of the disease, but can include numb-
ness and tingling in the extremities, uncontrollable muscle 
contractions and burning or electric pain. In an effort to 
develop better ways to control this pain, Dinesh Selvarjah and 
colleagues† conducted a prospective randomized double 
blind placebo controlled trial of a cannabis-based medicine 
to investigate whether this medicinal would effectively con-
trol the pain associated with diabetic neuropathy.

Experimental subjects were recruited from a diabetes 
clinic and randomly assigned to either receive the canna-
bis medicinal or a placebo. The experiment is double blind 
because neither the experimental subjects nor the investi-
gators knew who was receiving the active medicinal. 
Including the placebo and blinding the experimental sub-
jects was important not only to avoid the placebo effect, 
but also to avoid biased reporting of pain, which can be 
subjective. Likewise, the investigators were also blinded to 
the subjects’ treatments to avoid biasing the recording and 
analysis of the pain data. The volunteers in the experiment 
were treated for 12 weeks, then asked to report their level 
of pain using a standardized questionnaire.

Figure 10-2 shows the raw data for the 29 people random-
ized to receive the placebo and the 24 people randomized to 
receive the medicinal. Even a cursory examination of the data 
shows that the pain responses are not normally distributed. 
(We discussed the data for placebo in conjunction with 

†Selvarjah D, Emery CJ, Ghandi G, Tesfaye S. Randomized placebo-
controlled double-blind clinical trial of cannabis-based medicinal product 
(sativex) in painful diabetic neuropathy. Diabetes Care. 2010;33:128–130.

MEDICINAL

PLACEBO

80 1006020 400

FIGURE 10-2. The level of pain reported among people with diabetic neuropathy after 12 weeks of 
taking a placebo or cannabis medicinal. The experimental subjects did not know which treatment 
they were receiving. Note that the pain distributions are not symmetrically distributed, but are skewed: 
most values tend to fall below about 30, but a few people experienced severe pain (high scores). 

*When there are tied measurements, the standard deviation needs to be 
reduced according to the following formula, which depends on the number 
of ties.
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1
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in which N = nS + nB, ti = number of tied ranks in ith set of ties, the sum 
indicated by Σ is computed over all sets of tied ranks.
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Figure 2-11 and Box 2-1.) Because we cannot assume that 
the underlying populations from which the data were 
drawn is normally distributed, we compare these two treat-
ment groups using the Mann-Whitney rank-sum test.

Table 10-4 shows the observed pain scores as well as the 
ranks of all the pain scores, without regard for which treat-
ment each person received. All 53 people are ranked as a single 
group with the person with the lowest pain score ranked 1 and 
the highest ranked 53. In this case, two people in the placebo 
group are tied for the lowest pain score, 4, so each receives a 
rank of 1.5, the average of the first and second ranks. Because 
three people, two in the placebo group and one on the can-

nibis group, have the next highest pain score of 7, each receives 
a rank of 4, the average of the third, fourth, and fifth ranks. 
The person with the highest pain score, 100, who happens to 
also be in the placebo group, receives a rank of 53.

The cannabis medicinal group is the smaller sample, so 
we compute the test statistic T by summing all the ranks 
in that group, yielding T = 737. The cannabis group has nS = 
24 people in it and the larger placebo group, nB = 29, so the 
mean value of T for all studies of this size is 

µT
S S Bn n n

=
+ +

= + + =
( ) ( )1

2

24 24 29 1

2
648

  TABLE 10-4. Diabetic Neuropathy Pain among People Treated with a Placebo and a Cannabis Medicinal

Placebo Cannabis Medicinal

Observation Rank Observation 	 Rank

13 16 90 50
8 6.5 10 9.5

46 39 45 38
61 44 70 45.5
28 31.5 13 16
7 4 27 30

93 51 11 11
10 9.5 70 45.5
7 4 14 19

100 53 15 20
4 1.5 13 16

16 21 75 47
23 27 50 40
33 35 30 34
18 22 80 48
51 41 40 37
26 29 29 33
19 23.5 13 16
20 25.5 9 8
54 42 7 4
19 23.5 20 25.5
37 36 85 49
13 16 55 43
8 6.5 94 52

28 31.5  

25 28 T = 737
4 1.5

12 12.5
12 12.5
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and the standard deviation is

σT
S B S Bn n n n

=
+ +

= + + =⋅( ) ( )
.

1

2

24 29 24 29 1

12
55 96

So
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1 581
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This value is smaller than 1.960, the value of z that 
defines the most extreme 5% of the normal distribution 
(from Table 4-1). Hence, this study does not provide sub-
stantial evidence that the cannabis medicinal was any 
more or less effective than placebo in controlling pain 
associated with diabetic neuropathy.

  �EACH SUBJECT OBSERVED BEFORE 
AND AFTER ONE TREATMENT: �
THE WILCOXON SIGNED-RANK TEST

Chapter 9 presented the paired t test to analyze experi-
ments in which each experimental subject was observed 
before and after a single treatment. This test required that 
the changes accompanying treatment be normally distrib-
uted. We now develop an analogous test based on ranks 
that does not require this assumption. We compute the 
differences caused by the treatment in each experimental 
subject, rank these differences according to their magni-
tude (without regard for sign), then attach the sign of the 

difference to each rank, and, finally, sum the signed ranks 
to obtain the test statistic W.

This procedure uses information about the sizes of the 
differences the treatment produces in each experimental sub-
ject as well as its direction. Since it is based on ranks, it does 
not require making any assumptions about the nature of the 
population of the differences the treatment produces. As with 
the Mann-Whitney rank-sum test statistic, we can obtain the 
distribution of all possible values of the test statistic W by 
simply listing all the possibilities of the signed-rank sum for 
experiments of a given size. We finally compare the value of 
W associated with our observations with the distribution of 
all possible values of W that can occur in experiments involv-
ing the number of individuals in our study. If the observed 
value of W is “big,” the observations are not compatible with 
the assumption that treatment had no effect.

Remember that observations are ranked based on the 
magnitude of the changes without regard for signs, so that 
the differences that are equal in magnitude but opposite 
in sign, say −5.32 and +5.32, both have the same rank.

We begin with another hypothetical experiment in which 
we wish to test a potential diuretic on six people. In contrast 
to the experiments the last section described, we will observe 
daily urine production in each person before and after 
administering the drug. Table 10-5 shows the results of this 
experiment, together with the change in urine production 
that followed administering the drug in each person.

Daily urine production fell in five of the six people. Are 
these data sufficient to justify asserting that the drug was 
an effective diuretic?

  TABLE 10-5. Effect of a Potential Diuretic on Six People

Daily Urine Production (mL/d)
Rank* of  
Difference

Signed Rank 
of DifferencePerson Before Drug After Drug Difference

1 1600 1490 −110 5 −5
2 1850 1300 −550 6 −6
3 1300 1400 +100 4 +4
4 1500 1410 −90 3 −3
5 1400 1350 −50 2 −2
6 1010 1000 −10 1 −1

W = −13

*1 = smallest magnitude; 6 = largest magnitude.
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  TABLE 10-6. Possible Combinations of Signed Ranks for a Study of Six Individuals

Rank*

1 2 3 4 5 6 Sum of Signed Ranks

− − − − − − −21
+ − − − − − −19
− + − − − − −17
− − + − − − −15
− − − + − − −13
− − − − + − −11
− − − − − + −9
+ + − − − − −15
+ − + − − − −13
+ − − + − − −11
+ − − − + − −9
+ − − − − + −7
− + + − − − −11
− + − + − − −9
− + − − + − −7
− + − − − + −5
− − + + − − −7
− − + − + − −5
− − + − − + −3
− − − + + − −3
− − − + − + −1
− − − − + + 1
+ + + − − − −9
+ + − + − − −7
+ + − − + − −5
+ + − − − + −3
+ − + + − − −5
+ − + − + − −3
+ − + − − + −1
+ − − + + − −1
+ − − + − + 1
+ − − − + + 3
− + + + − − −3
− + + − + − −1
− + + − − + 1
− + − + + − 1
− + − + − + 3
− + − − + + 5
− − + + + − 3
− − + + − + 5
− − + − + + 7
− − − + + + 9

(continued)
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  TABLE 10-6. Possible Combinations of Signed Ranks for a Study of Six Individuals (Continued)

Rank*

1 2 3 4 5 6 Sum of Signed Ranks

+ + + − + − 1
+ + + − − + 3
+ + − + + − 3
+ + − + − + 5
+ + − − + + 7
+ − + + + − 5
+ − + + − + 7
+ − + − + + 9
+ − − + + + 11
− + + + + − 7
− + + + − + 9
− + + − + + 11
− + − + + + 13
− − + + + + 15
+ + + + + − 9
+ + + + − + 11
+ + + − + + 13
+ + − + + + 15
+ − + + + + 17
− + + + + + 19
+ + + + + + 21

*Signs denote whether rank is positive or negative.

To apply the signed-rank test, we first rank the magni-
tudes of each observed change, beginning with 1 for the 
smallest change and ending with 6 for largest change. 
Next, we attach the sign of the change to each rank (last 
column of Table 10-5) and compute the sum of the signed 
ranks W. For this experiment, W = -13.

If the drug has no effect, the ranks associated with 
positive changes should be similar to the ranks associated 
with the negative changes and W should be near zero. On 
the other hand, when the treatment alters the variable 
being studied, the changes with the larger or smaller ranks 
will tend to have the same sign and the signed rank sum 
W will be a big positive or big negative number.

As with all test statistics, we need only draw the line 
between “small” and “big.” We do this by listing all 64 pos-
sible combinations of different ranking patterns, from all 
negative changes to all positive changes (Table 10-6). 

There is one chance in 64 of getting any of these patterns 
by chance. Figure 10-3 shows all 64 of the signed-rank 
sums listed in Table 10-6.

To define a “big” value of W, we take the most extreme 
values of W that can occur when the treatment has no effect. 
Of the 64 possible rank sums, 4, or 4 64 0625 6 25/ . . %,= =
fall at or beyond 19 (or −19), so we will reject the hypoth-
esis that the treatment has no effect when the magni-
tude of W equals or exceeds 19 (i.e., W equals or is more 
negative than −19 or more positive than +19) with 
P = .0625.

Notice that, as with the Mann-Whitney rank-sum test, 
the discrete nature of the distribution of possible values of 
W means that we cannot always obtain P values precisely 
at traditional levels, such as 5%. Since the value of W asso-
ciated with the observations in Table 10-5 is only −13, 
these data are not sufficiently incompatible with the 
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as our test statistic. This approximation can be improved 
by including a continuity correction to obtain

ΖW

W

n n n
=

−

+ +

1
2

1 2 1 6[ ( )( )]/

There are two kinds of ties that can occur when computing 
W. First, there can be no change in the observed variable 
when the treatment is applied, so that the difference is zero. 
In this case, that individual provides no information about 
whether the treatment increases or decreases the response 
variable; so it is simply dropped from the analysis, and the 
sample size is reduced by 1. Second, the magnitudes of the 
change the treatment produces can be the same for two or 
more individuals. As with the Mann-Whitney test, all the 
individuals with that change are assigned the same rank as 
the average of the ranks that would be used for the same 
number of individuals if they were not tied.*

In sum, here is the procedure for comparing the 
observed effects of a treatment in a single group of experi-
mental subjects before and after administering a treatment:

•	 Compute the change in the variable of interest in each ex-
perimental subject.

•	 Rank all the differences according to their magnitude with-
out regard for sign. (Zero differences should be dropped 
from the analysis with a corresponding reduction of sample 

  �TABLE 10-7. Critical Values (Two-Tailed) of 
Wilcoxon W

n Critical Value P

5 15 .062
6 21 .032

19 .062
7 28 .016

24 .046
8 32 .024

28 .054

Data from Table A-11 of Mosteller F, Rourke R. Sturdy Statistics: 
Nonparametrics and Order Statistics. Reading, MA: Addison-Wes-
ley; 1973.

*When there are tied ranks and you use the normal distribution to com-
pute the P value, sW needs to be reduced by a factor that depends on the 
number of ties according to the formula

σ
τ τ τ

W
i i in n n= + + −
− +∑( )( ) ( ) ( )1 2 1

6

1 1

12

in which n is the number of experimental subjects, τi is the number of 
tied ranks in the ith set of ties, and Σ indicates summation over all the 
sets of tied ranks.

21 211

SUM OF SIGNED RANKS (W )

–1

FIGURE 10-3. All 64 possible sums of signed ranks for observations before 
and after administering a treatment to six individuals. Table 10-6 lists all the 
possibilities. The colored circles show that 4 out of 64 have a magnitude of 
19 or more, that is, fall at or below –19 or at or above +19.

assumption that the treatment had no effect (that the 
drug is not an effective diuretic) to justify rejecting that 
hypothesis.

Table 10-7 presents the values of W that come 
closest to defining the most extreme 5% and 1% of all 
possible values for experiments with up to 8 subjects. For 
larger experiments, we use the fact that the distribution of 
W closely approximates a normal distribution with mean

µW = 0

and standard deviation

σW

n n n= + +( )( )1 2 1

6

in which n equals the number of experimental subjects.
Therefore, we use

Ζ
µ

σW
W

W

W W

n n n
=

−
=

+ +[ ( )( )]/1 2 1 6
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size. Tied ranks should be assigned the average of the 
ranks that would be assigned to the tied ranks if they were 
not tied.)

•	 Apply the sign of each difference to its rank.

•	 Add all the signed ranks to obtain the test statistic W.*

•	 Compare the observed value of W with the distribution of 
possible values that would occur if the treatment had no 
effect, and reject this hypothesis if W is “big.”

To further illustrate this process, let us use the Wilcoxon 
signed-rank test to analyze the results of an experiment we 
discussed in Chapter 9.

Cigarette Smoking and Platelet Function
Table 10-8 reproduces the results, shown in Figure 9-2, of 
Levine’s experiment measuring platelet aggregation of 11 
people before and after each one smokes a cigarette. 
Recall that increased platelet aggregation indicates a 
greater propensity to form blood clots (capable of caus-

ing heart attacks, strokes, and other vascular disorders). 
The fourth column of Table 10-8 shows the change  
in platelet aggregation that accompanies smoking a  
cigarette.

Figure 10-4 shows these differences. While this figure 
may not present results that preclude using methods based 
on the normal distribution (such as the paired t test), 
it does suggest that it would be more prudent to use a 
nonparametric method such as the Wilcoxon signed-rank 
test because the differences do not appear to be symmet-
rically distributed about the mean and more likely to be 
near the mean than far from it. In particular, outliers such 
as the point at 27% can bias methods based on a normal 
distribution.

To continue with our computation, which does not 
require the assumption of normally distributed changes, 
rank the magnitudes of each of these changes, the smallest 
change (1%) being ranked 1 and the largest change (27%) 
being ranked 11. The fifth column in Table 10-8 shows 
these ranks. The last column shows the same ranks with 
the sign of the change attached. The sum of the signed 
ranks W is 2 + 3.5 + 6 + 7 + 10 + 8.5 + 3.5 + 11 + 5 + (-1) 
+ 8.5 = 64. This value exceeds 52, the value that defines the 
1.8% most extreme values of W that can occur when the 
treatment has no effect (from Table 10-7), so we can 
report that these data support the assertion that smoking 
increases platelet aggregation (P = .018).

*Note that we have developed W as the sum of all the signed ranks of the 
differences. There are alternative deviations of the Wilcoxon signed-rank 
test that are based on the sum of only the positively or negatively signed 
ranks. These alternative forms are mathematically equivalent to the one 
developed here. You need to be careful when using tables of the critical 
value W to be sure which way the test statistic was defined when the table 
was constructed.

  TABLE 10-8. Maximum Percentage Platelet Aggregation before and after Smoking One Cigarette

Person Before Smoking After Smoking Difference
Rank of 

Difference
Signed Rank  
of Difference

1 25 27 2 2 2
2 25 29 4 3.5 3.5
3 27 37 10 6 6
4 44 56 12 7 7
5 30 46 16 10 10
6 67 82 15 8.5 8.5
7 53 57 4 3.5 3.5
8 53 80 27 11 11
9 52 61 9 5 5

10 60 59 –1 1 –1
11 28 43 15 8.5 8.5

W = 64
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  �EXPERIMENTS WITH THREE OR MORE 
GROUPS WHEN EACH GROUP 
CONTAINS DIFFERENT INDIVIDUALS: 
THE KRUSKAL-WALLIS Test

Chapter 3 discussed experiments in which three or more 
different groups of experimental subjects are exposed to 
different treatments and the observations could be con-
sidered to come from normally distributed populations 
with similar variances. Now we shall develop an analogous 
procedure to the one-way analysis of variance (Chapter 3) 
based on ranks that does not require making these 
assumptions.

The Kruskal-Wallis test is a direct generalization of the 
Mann-Whitney rank-sum test. One first ranks all the 
observations without regard for which treatment group they 
are in, beginning with 1 for the smallest observation. (Ties 
are treated as before, that is, they are assigned the average 
value that would be associated with the tied observations 
if they were not tied.) Next, compute the rank sum for 
each group. If the treatments have no effect, the large and 
small ranks should be evenly distributed among the different 
groups, so the average rank in each group should approxi-
mate the average of all the ranks computed without regard 
of the grouping. The more disparity there is between 
observed average ranks in each group and what you would 
expect if the hypothesis of no treatment effect was true, 
the less likely we will be to accept that hypothesis. Now, let 
us construct such a test statistic.

For simplicity let us assume there are only three groups; 
then generalize the resulting equations to any number of 
groups when we are finished. The three different treat-
ment groups contain n1, n2, and n3 experimental subjects, 
and the rank sums for these three groups are R1, R2, and 
R3. Therefore, the mean ranks observed in the three 
groups are R R n R R n1 1 1 2 2 2= =, , and R R n3 3 3= , 

respectively. The average rank of all the n1 + n2 + n3 = N 
observations is the average of the first N integers

R
N

N

N= + + + + = +1 2 3 1

2

�

We will use the sum of squared deviations between 
each sample group’s average rank and the overall average 
rank, weighted by the sizes of each group, as a measure of 
variability between the observations and what you would 
expect if the hypothesis of no treatment effect was true. 
Call this sum D.

D n R R n R R n R R= − + − + −1 1
2

2 2
2

3 3
2( ) ( ) ( )

This sum of squared deviations is exactly analogous to 
the weighted sum of squared deviations between the sam-
ple means and grand mean that define the between-
groups sum of squares in the parametric one-way repeated 
measures analysis of variance as developed in Chapter 9.

The distribution of possible values of D when the 
treatments have no effect depends on the size of the sam-
ple. It is possible to obtain a test statistic that does not 
depend on sample size by dividing D by N (N + 1)/ 12,

H
D

N N N N
n R Rt t=

+
=

+
−∑

( )/ ( )
( )

1 12

12

1
2

The summation denoted with Σ is over all the treat-
ment groups, regardless of how many treatment groups 
there are. It is the Kruskal-Wallis test statistic.

The exact distribution of H can be computed by listing 
all the possibilities, as we did with Mann-Whitney and 
Wilcoxon tests, but there are so many different possibili-
ties that the resulting table would be huge. Fortunately, if 
the sample sizes are not too small, the c2 distribution with 
n = k - 1 degrees of freedom, where k is the number of 
treatment groups, closely approximates the distribution of 

–2 0 10 20 30

FIGURE 10-4. Change in platelet aggregation after smoking a 
cigarette. These changes do not seem to be normally distributed, 
especially because of the outlier at 27%. This plot suggests that a 
nonparametric method, such as the Wilcoxon signed-rank test, is 
preferable to a parametric method, such as the paired t test, to 
analyze the results of this experiment.
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H. Hence, we can test the null hypothesis that the treat-
ments had no effect by computing H for the observations 
and comparing the resulting value with the critical values 
for c2 in Table 5-7. This approximation works well in 
experiments with three treatment groups when each 
group contains at least five members and for experiments 
with four treatment groups when there are more than 10 
individuals in the entire study. For smaller studies, consult 
a table of the exact distribution of the H to obtain the P 
value. (We do not include such a table because of its length 
and the relatively infrequent need for one; most interme-
diate statistics texts include one.)

In summary, the procedure for analyzing an experi-
ment in which different groups of experimental subjects 
receive each treatment is:

•	 Rank each observation without regard for treatment 
group, beginning with a rank of 1 for the smallest observa-
tion. (Ties are treated in the same way as the other rank 
tests.*)

•	 Compute the Kruskal-Wallis test statistic H to obtain a 
normalized measure of how much the average ranks 
within each treatment group deviate from the average 
rank of all the observations.

•	 Compare H with c2 distribution with 1 less degree of free-
dom than the number of treatment groups, unless the 
sample size is small, in which case you must compare H 
with the exact distribution. If H exceeds the critical value 
that defines a “big” H, reject the null hypothesis that the 
treatment has no effect.
Now let us illustrate this procedure with an example.

Prenatal Marijuana Exposure and Child Behavior
Although most women stop using marijuana once they get 
pregnant, approximately 2.8% report using it during the 
first trimester of pregnancy and occasionally during the 
remainder of pregnancy. Exposure to marijuana is associ-
ated with attention deficits and impulsivity in young  

children whose mothers used marijuana while pregnant, but 
not as much is known about the long-term effects on cogni-
tive function. Lidush Goldschmidt and colleagues† designed 
a prospective observational study to track children whose 
mothers used marijuana during pregnancy. They inter-
viewed women who came to a prenatal clinic and attempted 
to recruit all women who used two or more joints of mari-
juana per month during the first trimester of pregnancy and 
a random selection of other pregnant women who did not 
smoke marijuana. They kept in touch with these women, 
then evaluated temperament and behavioral characteristics 
of the children when they were 10 years old. One of the 
assessments used to address attention deficit disorder and 
hyperactivity was the Swanson, Noland, and Pelham (SNAP) 
checklist, which is a questionnaire completed by mothers.

Table 10-9 gives the SNAP scores for the 31 children in 
this study. It shows the ranks of each observation together 
with the sum of ranks and mean ranks for each of the three 
exposure groups. The mean rank of all 31 observations is

R
N= + + + + = + = + =1 2 3 31

31

1

2

31 1

2
16

�

Therefore, the weighted sum of squared deviations 
between the average ranks observed in each treatment 
group and the average of all ranks is

D = − + − + −
=

13 11 23 16 9 16 89 16 9 22 00 16

1

2 2 2( . ) ( . ) ( . )

33 4 77 9 0 89 9 6 00 626 922 2 2( . ) ( . ) ( . ) .− + + =

and, so,

H
D

N N
=

+
=

+
=

( )/

.

( )/
.

1 12

626 92

31 31 1 12
7 58

This value exceeds 5.991, the value that defines the 
largest 5% of the c2 distribution with n = k - 1 = 3 − 1 = 2 
degrees of freedom (from Tables 5-7). Therefore, we con-
clude that at least one of these three groups differed in 
hyperactivity and attention deficit (P < .05).

Nonparametric Multiple Comparisons
As discussed in Chapter 5, the Bonferroni, Holm and 
Holm-Sidak procedures are based on controlling how 
probabilities of false positive errors accumulate in a family 

*When there are ties, the approximation between the distributions of H 
and x2 can be improved by dividing H computed above by

1
1 1

12
−

− +
−

∑( ) ( )

( )

τ τ τi i i

N N

where τi is the number of ties in the ith set of tied ranks (as before). If 
there are only a few ties, this correction makes little difference and may 
be ignored.

†Goldschmidt L, Day NL, Richardson GA. Effects of prenatal marijuana 
exposure on child behavior problems at age 10. Neurotoxicol Tetratol. 
2000;22:325−336.
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of comparisons so these tests can be applied to any kind 
of multiple comparisons. Thus, if we reject the null 
hypothesis of no difference among three or more groups 
using a Kruskal-Wallis analysis of variance on ranks, we 
can do the multiple comparisons using a series of Mann-
Whitney rank-sum tests, with the critical P values adjusted 
for the multiple comparisons using the Holm-Sidak pro-
cedure. We will do all pairwise comparisons; multiple 
comparisons against a single control group would proceed 
in an analogous way, accounting for the fact that we would 
have to protect the family error rate against a smaller 
number of comparisons.

The first step in doing all pairwise comparisons for the 
study of marijuana smoke exposure during pregnancy and 
SNAP scores for their children is do the three pairwise com-
parisons of the data in Table 10-9 with Mann-Whitney rank-
sum tests. Table 10-10 shows these tests. Note that the 
observations are ranked separately in each of the three 
Mann-Whitney rank-sum tests.

Finally, we test the pairwise comparisons in descending 
order of the size of zT , as summarized in Table 10-11. The 

first comparison, no marijuana smoking compared to 
smoking more than an average of .89 joints/day, was statis-
tically significant, so we can conclude that the higher level 
of marijuana use by a pregnant woman was associated with 
attention deficit and hyperactivity in her child. The results 
for lower use are ambiguous; there is no detectable differ-
ence between nonusers and low (less than an average of .89 
joints/day) users and low users and higher users, so this 
study is not adequate to determine whether there is a 
threshold for the effect and, if so, where that threshold is. 
Collecting more data — which would provide more 
power — should resolve this ambiguity.

Interestingly, had we done multiple comparisons 
against a single control group rather than all pairwise 
comparisons, we would have concluded that children 
whose mothers engaged in low levels smoking were not 
significantly different those whose mothers did not smoke 
at all, while children of mothers who were heavier mari-
juana smokers were affected, a less ambiguous finding. 
(We would avoid the ambiguous finding because we 
would not have tested the difference between low and high 

  TABLE 10-9. Average Number of Joints Per Day (AJD)

AJD = 0
n1 = 13

0 < AJD ≤ 0.89
n1 = 9

AJD > 0.89
n1  = 9

SNAP Score Rank SNAP Score Rank SNAP Score Rank

7.79 4 8.84 12 8.65 11
9.16 17 9.92 24 10.70 31
7.34 2 7.20 1 10.24 28

10.28 29 9.25 20 8.62 10
9.12 15 9.45 21 9.94 25
9.24 19 9.14 16 10.55 30
8.40 7 9.99 26 10.13 27
8.60 9 9.21 18 9.78 23
8.04 5 9.06 14 9.01 13
8.45 8
9.51 22
8.15 6
7.69 3   

Sum of 
ranks, Rt

146 152 198

Mean rank, 
Rt = Rt /nt

11.23 16.89 22.00



  TABLE 10-10. Mann-Whitney Tests for Multiple Comparisons for Marijuana Exposure and Child Behavior

None vs. Low None vs. High Low vs. High

SNAP 
Score Rank

SNAP 
Score Rank

SNAP 
 Score Rank

SNAP 
Score Rank

SNAP 
Score Rank

SNAP 
Score Rank

None Low None High Low High

7.79 4 8.64 10 7.79 3 8.65 10 8.64 3 8.65 4
9.16 14 9.92 20 9.16 13 10.70 22 9.92 12 10.70 18
7.34 2 7.20 1 7.34 1 10.24 19 7.20 1 10.24 16

10.28 22 9.25 17 10.28 20 8.62 9 9.25 9 8.62 2
9.12 12 9.45 18 9.12 12 9.94 17 9.45 10 9.94 13
9.24 16 9.14 13 9.24 14 10.55 21 9.14 7 10.55 17
8.40 7 9.99 21 8.40 6 10.13 18 9.99 14 10.13 15
8.60 9 9.21 15 8.60 8 9.78 16 9.21 8 9.78 11
8.04 5 9.06 11 8.04 4 9.01 11 9.06 6 9.01 5
8.45 8 8.45 7
9.51 19 9.51 15
8.15 6 8.15 5
7.69 3 7.69 2

nB = 13 nS = 9 T = 126 nB = 13 nS = 9 T = 143 nB = 9 T = 70 nS = 9

µ

σ

T

T

=
9(9 + 13 + 1)

2
= 103.5

=
9 13(9 + 13 + 1)

12
= 14.97

z

⋅

TT =
126 103.5

14.97
= 1.470

1
2− −

.20 < P < .10

µ

σ

T

T

=
9(9 + 13 + 1)

2
= 103.5

=
9 13(9 + 13 + 1)

12
= 14.97

z

⋅

TT =
143 103.5

14.97
= 2.605

1
2− −

P < .01

µ

σ

T

T

T

=
9(9 + 9 + 1)

2
= 85.5

=
9 9(9 + 9 + 1)

12
= 11.32

z =
70

⋅

−− −85.5

11.32
= 1.325

1
2

.20 < P < .10
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users.) Of course, given the small size of the study, this 
negative conclusion could have been the result of low 
power. 

  �EXPERIMENTS IN WHICH EACH 
SUBJECT RECEIVES MORE THAN ONE 
TREATMENT: THE FRIEDMAN TEST

Often it is possible to complete experiments in which each 
individual is exposed to a number of different treatments. 
This experimental design reduces the uncertainty due to 
variability in the responses between individuals and pro-
vides a more sensitive test of what the treatments do in a 
given person. When the assumptions required for para-
metric methods can be reasonably satisfied, such experi-
ments can be analyzed with the repeated measures analysis 
of variance in Chapter 9. Now we will derive an analogous 
test based on ranks that does not require that the observa-
tions be drawn from normally distributed populations, the 
Friedman test.

The logic of this test is quite simple. Each experimental 
subject receives each treatment, so we rank each subject’s 
responses to the treatments without regard for the other 
subjects. If the null hypothesis that the treatment has no 
effect is true, then, for each subject, the ranks will be ran-
domly distributed and the sum of the ranks for each treat-
ment will be similar. Table 10-12 illustrates such a case, in 
which five different subjects receive four treatments. 
Instead of the measured responses, this table contains the 
ranks within each experimental subject’s responses. Hence, 
the treatments are ranked 1, 2, 3, and 4 separately for each 
subject. The bottom line in the table gives the sums of the 
ranks for all people receiving each treatment. These rank 
sums are all similar and also roughly equal to 12.5, which 
is the average rank, (1 + 2 + 3 + 4)/4 = 2.5, times the num-
ber of subjects, 5. This table does not suggest that any of 
the treatments had any systematic effect on the experi-
mental subjects.

Now consider Table 10-13. The first treatment always 
produces the greatest response in each experimental  

  �TABLE 10-11. Pairwise Comparisons of Smoking Marijuana while Pregnant and Child Behavior Using the 
Holm-Sidak Adjustment (Family Error Rate, αT = 0.05)

Comparison zT P j Pcrit = αT /(k-j + 1) P < Pcrit?

None vs. high 2.605 <.010 1 .0170 Yes
None vs. low 1.470 <.10 2 .0253 No
Low vs. high 1.325 <.10 3 .0500 No*

*Because the second comparison is not significant, all subsequent comparisons are considered not significant.

  �TABLE 10-12. Ranks of Outcomes for an 
Experiment When Five Subjects Each Receive 
Four Treatments

Experimental 
	 Subject

Treatment

1 2 3 4

1 1 2 3 4
2 4 1 2 3
3 3 4 1 2
4 2 3 4 1
5 1 4 3 2

Rank sum Rt 11 14 13 12

  �TABLE 10-13. Ranks of Outcomes for Another 
Experiment When Five Subjects Each Receive 
Four Treatments

Experimental 
	 Subject

Treatment

1 2 3 4

1 4 1 3 2
2 4 1 3 2
3 4 1 3 2
4 4 1 3 2
5 4 1 3 2

Rank sum Rt 20 5 15 10
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subjects the second treatment always produces the 
smallest response, and the third and fourth treatments 
always produce intermediate responses, the third treat-
ment producing a greater response than the fourth 
treatment. The bottom line shows the column rank 
sums. In this case, there is a great deal of variability in 
the rank sums, some being much larger or smaller than 
five times the average rank of 12.5. Table 10-13 strongly 
suggests that the treatments affect the variable being 
studied.

All we have left to do is to reduce this subjective impres-
sion of a difference to a single number. In a way similar  
to that used in deriving the Kruskal-Wallis statistic, we 
compute the sum of squared deviations between the rank 
sums observed for each treatment and the rank sum that 
we would expect if each treatment were as likely to have 
any of the possible rankings. This latter number is the 
average of the possible ranks.

For the examples in Tables 10-12 and 10-13, there are 
four possible treatments, so there are four possible 
ranks. Therefore, the average rank is (1 + 2 + 3 + 4)/4 = 
2.5. In general, if there are k treatments, the average 
rank will be

1 2 3 1

2

+ + + + = +� k

k

k

In our example, there are five experimental subjects, 
so we would expect each of the rank sums to be around 
5 times the average rank for each person, or 5(2.5) = 
12.5. In Table 10-12 this is the case whereas in Table 
10-13 it is not. If there are n experimental subjects and 
the ranks are randomly distributed between the treat-
ments, each of the rank sums should be about n times 
the average rank, or n (k + 1)/2. Hence, we can collapse 
all this information into a single number by computing 
the sum of squared differences between the observed 
rank sums and rank sums that would be expected if the 
treatments had no effect.

S R n kt= − +∑[ ( )/ ]1 2 2

in which Σ denotes the sum over all the treatments and Rt 
denotes the sum of ranks for treatment t.

For example, for the observations in Table 10-12, k = 4 
treatments and n = 5 experimental subjects, so

S = − + − + − + −( . ) ( . ) ( . ) ( .11 12 5 14 12 5 13 12 5 12 12 52 2 2 ))

( . ) ( . ) (. ) ( . )

2

2 2 2 21 5 1 5 5 5 5= − + + + − =

and for Table 10-13

S = − + − + − + −( . ) ( . ) ( . ) ( . )20 12 5 5 12 5 15 12 5 10 12 52 2 2 22

2 2 2 27 5 7 5 2 5 2 5 125= + − + + − =( . ) ( . ) ( . ) ( . )

In the former case, S is a small number; in the latter S 
is a big number. The more of a pattern there is relating the 
ranks within each subject to the treatments, the greater 
the value of our test statistic S.

We could stop here and formulate a test based on S, but 
statisticians have shown that we can simplify the problem 
by dividing this sum of squared differences between the 
observed and expected rank sums by nk (k + 1)/12 to 
obtain

χr
tS

nk k

R n k

nk k
2

2

1 12

12 1 2

1

12

=
+

=
− +

+

=

∑
( )/

[ ( )/ ]

( )

nnk k
R n kt( )

( )
+

− +∑
1

3 12

The test statistic cr
2 , is called Friedman’s statistic and 

has the desirable property that, for large enough samples, 
it follows the χ2 distribution with n = k − 1 degrees of 
freedom, regardless of sample size.* When there are three 
treatments and nine or fewer experimental subjects or four 
treatments with four or fewer experimental subjects each, 
the χ2 approximation is not adequate, so one needs to 
compare cr

2 to the exact distribution of possible values 
obtained by listing all the possibilities in Table 10-14.

In summary, the procedure for using the Friedman sta-
tistic to analyze experiments in which the same individu-
als receive several treatments is as follows:

•	 Rank each observation within each experimental sub-
ject, assigning 1 to the smallest response. (Treat ties as 
before.)

*When there are tied measurements, cr
2 needs to be increased by divid-

ing it by

1

1 1

−

− +∑ ( ) ( )τ τ τij ij ij

j
ties within
subjects,

subbjects, i

Nk k

∑

−( )2 1

in which tij = number of tied ranks in the ith set of ties within the ranks 
for subject j, and the double sum SS is computed over all ties within each 
subject. If there are only a few ties, this correction makes little difference 
and can be ignored.
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• 	 Compute the sum of the ranks observed in all subjects for 
each treatment.

• 	 Compute the Friedman test statistic χr
2

as a measure 
of how much the observed rank sums differ from  
those that would be expected if the treatments had no ef-
fect.

• 	 Compare the resulting value of the Friedman statistic with 
the χ 2 distribution if the experiment involves large 
enough samples or with the exact distribution of χr

2 in 
Table 10-14 if the sample is small.

Anti-asthmatic Drugs and Endotoxin
Table 10-15 reproduces the observed forced expiratory 
volume 1 (FEV1) at one second in Table 9-5 that Berenson 
and colleagues used to study whether or not salbutamol 
had a protective effect on endotoxin induced bronchocon-
striction. In Chapter 9, we analyzed these data with a 
repeated measures one-way analysis of variance. Now, let 
us reexamine them using ranks to avoid having to make 
any assumptions about the population these patients rep-
resent.

  TABLE 10-14. Critical Values for Friedman χ2 r

k = 3 Treatments k = 4 Treatments

n P n 	 P

3 6.00 .028 2 6.00 .042
4 6.50 .042 3 7.00 .054

8.00 .005 8.20 .017
5 5.20 .093 4 7.50 .054

6.40 .039 9.30 .011
8.40 .008 5 7.80 .049

6 5.33 .072 9.96 .009
6.33 .052 6 7.60 .043
9.00 .008 10.20 .010

7 6.00 .051 7 7.63 .051
8.86 .008 10.37 .009

8 6.25 .047 8 7.65 .049
9.00 .010 10.35 .010

9 6.22 .048
8.67 .010

10 6.20 .046
8.60 .012

11 6.54 .043
8.91 .011

12 6.17 .050
8.67 .011

13 6.00 .050
8.67 .012

14 6.14 .049
9.00 .010

15 6.40 .047
8.93 .010

Data from Owen DB. Handbook of Statistical Tables. US Department of Energy. Reading, MA: Addison-Wesley; 1962.

χr
2 χr

2
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Table 10-15 shows how the three treatments rank in 
terms of FEV1 for each of the four people in the study. The 
last row gives the sums of the ranks for each treatment. 
Since the possible ranks are 1, 2, and 3, the average rank is 
(1 + 2 + 3)/3 = 2. Since there are four people, if the treat-
ments had no effect, these rank sums should all be about 
4 (2) = 8. Hence, our measure of the difference between 
this expectation and the observed data is

S = ( ) ( ) ( )

( ) ( ) ( )

8 8 4 8 12 8

0 4 4 32

2 2 2

2 2 2

− + − + −
= + + =

We convert S into cr
2 by dividing by nk (k + 1)/12 = 4(3)

(3 + 1)/12 = 4 to obtain cr
2 = =32 4 8 0/ . . Table 10-14 

shows that for an experiment with k = 3 treatments and n 
= 4 experimental subjects there is only a P = .042 chance of 
obtaining a value of cr

2  as big or bigger than 8 by chance 
if the treatments have no effect. Therefore, we can report 
that endotoxin and salbutamol alter FEV1 (P = .042).

Multiple Comparisons after the Friedman Test
Just as we could use the Mann-Whitney test with a Holm-
Sidak (or Bonferroni or Holm) correction for multiple 
comparisons following a Kruskal-Wallis analysis of vari-
ance on ranks, we can use the Wilcoxon signed rank tests 
with a Holm-Sidak (or Bonferroni or Holm) correction 
for multiple comparisons following a significant Fried-
man repeated measures analysis of variance on ranks. 

  SUMMARY

The methods in this chapter permit testing hypotheses 
similar to those we tested with analysis-of-variance and t 
tests but do not require us to assume that the underlying 
populations follow normal distributions. We avoid having 
to make such an assumption by replacing the observations 
with their ranks before computing the test statistic (T, W, 
H, or cr

2). By dealing with ranks we preserve most of the 
information about the relative sizes (and signs) of the 
observations. More important, by dealing with ranks, we 
do not use information about the population or popula-
tions the samples were drawn from to compute the distri-
bution of possible values of the test statistic. Instead we 
consider the population of all possible ranking patterns 
(often by simply listing all the possibilities) to compute 
the P value associated with the observations.

It is important to note that the procedures we used in 
this chapter to compute the P value from the ranks of the 
observations is essentially the same as the methods we 
have used everywhere else in this book:

•	 Assume that the treatment(s) had no effect, so that any 
differences observed between the samples are due to the 
effects of random sampling.

•	 Define a test statistic that summarizes the observed differ-
ences between the treatment groups.

•	 Compute all possible values this test statistic can take 
on when the assumption that the treatments had no effect 

  �TABLE 10-15. Forced Expiratory Volume at 1 Second before and after Bronchial Challenge with Endotoxin
and Salbutamol

FEV1 (L)

No Drug 
(Baseline)

One Hour 
after Endotoxin

Two Hours after 
Endotoxin and  

Salbutamol

Person (Subject) Units Rank Units Rank Units Rank

1 3.7 2 3.4 1 4.0 3
2 4.0 2 3.7 1 4.4 3
3 3.0 2 2.8 1 3.2 3
4 3.2 2 2.9 1 3.4 3

Rank sums for  
each group

8 4 12



226 Chap t e r  10

is true. These values define the distribution of the test  
statistic we would expect if the hypothesis of no effect was 
true.

•	 Compute the value of the test statistic associated with the 
actual observations in the experiment.

•	 Compare this value with the distribution of all possible 
values; if it is “big,” it is unlikely that the observations 
came from the same populations (i.e., that the treatment 
had no effect), so conclude that the treatment had an  
effect.

The specific procedure you should use to analyze the 
results from a given experiment depends on the design of 
the experiment and the nature of the data. When the data 
are measured on an ordinal scale or you cannot or do not 
wish to assume that the underlying populations follow 
normal distributions, the procedures developed in this 
chapter are appropriate.

  PROBLEMS

10-1 Despite progresses in technique, adhesions (the 
abnormal connection between tissues inside the body 
formed during healing following surgery) continue to be 
a problem in abdominal surgery, such as when operating 
on the uterus. To see if it would be possible to reduce 
adhesions following uterine surgery by placing a mem-
brane around the area of incision in the uterus, Nurullah 
Bülbüller and colleagues* operated on the uteruses of 
two groups of rats, a control group that simply received 
the surgery and a test group that had the membrane 
applied over the uterus. This bioresorbable membrane 
prevented the tissue of the uterus from connecting to 
other internal organs of the peritoneum (the inside lin-
ing of the abdomen), then was slowly absorbed by the 
surrounding tissue after healing was complete. They 
allowed the rats to heal, then sacrificed them and mea-
sured the amount of adhesions, according to the scale in 
Table 10-16. The scores for the two groups of rats using 
the different surgical techniques are in Table 10-17. Does 
use of the membrane affect the extent of adhesions?

*Bülbüller N, et al. Effect of a bioresorbable membrane on postoperative 
adhesions and wound healing. J Reprod Med. 2003;48:547–550.  

  �TABLE 10-16. Scale for Rating Adhesions 

Grade Definition

0 No adhesions
1 One band between organs or between one 

organ and the peritoneum
2 Two bands between organs or between 

one organ and the peritoneum
3 More than two bands between organs or 

mass formed by intestines not adhering 
to the peritoneum

4 Organs adhering to peritoneum or 
extensive adhesions

  �TABLE 10-17. Uterine Adhesions Grade Using 
Two Different Surgical Techniques

Control Bioresorbable Membrane

3 1
4 1
4 2
4 0
2 0
1 0
3 2
2 0
1 1
0 3

10-2 The inappropriate and overuse of antibiotics is a 
well-recognized problem in medicine. To test whether it 
was possible to encourage more appropriate use of antibi-
otics in elderly hospitalized patients, Monika Lutters and 
her colleagues* monitored the number of patients receiv-
ing antibiotics in a 304-bed geriatric unit at her hospital 

*Lutters M, et al. Effect of a comprehensive, multidisciplinary, educa-
tional program on the use of antibiotics in a geriatric university hospital. 
J Am Geriatr Soc. 2004;52:112–116.
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before any intervention, after providing information to the 
physicians taking care of patients in the unit, after provid-
ing pocket cards with specific therapeutic guidelines for 
the use of antibiotics to treat the most common need for 
antibiotics in these patients (urinary and respiratory tract 
infections) combined with weekly lectures on appropriate 
use of antibiotics, then while the pocket cards were contin-
ued but the lectures stopped. The number of patients in 
the unit receiving antibiotics was recorded on each of 12 
days under each experimental condition (see Table 10-18). 
Did the educational interventions have any effect on the 
number of patients receiving antibiotics? If so, how?

  �TABLE 10-18. Number of Patients Receiving 
Antibiotics (out of 304 in the Geriatric Unit)

Baseline Information

Pocket Cards 
Plus Weekly 

Lectures
Pocket 

Cards Only

55 51 50 45
54 53 51 59
57 67 52 58
54 55 50 45
59 51 53 49
57 50 52 55
67 52 64 46
80 56 52 52
55 84 53 50
55 54 51 53
56 54 52 45
65 67 45 56

*Berenson G, et al. Abnormal characteristics in young offspring of par-
ents with non-insulin-dependent diabetes mellitus. Am J Epidemiol. 
1996;144:962–967. 
†Petry N. Gambling problems in substance abusers are associated with 
increased sexual risk behaviors. Addiction. 2000;95:1089–1100.

10-5 To determine whether or not offspring of parents 
with type II diabetes have abnormal glucose levels com-
pared to offspring without a parental history of type II 
diabetes. Gerald Berenson and colleagues* collected data 
on whether these offspring had different cholesterol levels. 
The data for 30 subjects are shown in Table 10-19. Are 
these data consistent with the hypothesis that these off-
spring differ in cholesterol levels?

10-6 People with problem gambling habits are often sub-
stance abusers; these behaviors may be connected by an 
underlying personality trait such as impulsivity. Nancy 
Petry† investigated whether problem gamblers would also 
be at higher risk for contracting HIV, since the underlying 
impulsivity might make problem gamblers more likely to 
engage in riskier sexual behavior. She administered a ques-
tionnaire known as the HIV Risk Behavior Scale (HRBS) to 
assess sexual risk behavior in two groups of substance abus-
ers, those with and without problem gambling. The HRBS 
is an 11-item questionnaire with questions addressing 
drug and sex behavior and responses are coded on a six-
point scale from 0 to 5, with higher values associated with 
riskier behavior. The results of the HRBS sex composite 
score are shown in Table 10-20. What do these data indi-
cate?

10-7 Rework Problem 9-1 using the Wilcoxon signed-rank 
test.

  �TABLE 10-19. Cholesterol Levels among Children of Parents with and without Diabetes

Offspring with a Diabetic Parent Offspring without a Diabetic Parent

181 183 170 173 174 168 165 163 175 176
179 172 175 178 176 166 163 174 175 173
158 179 180 172 177 179 180 176 167 176

10-3 Rework Problem 9-5 using methods based on ranks.

10-4 Rework Problem 9-6 using methods based on ranks.
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  �TABLE 10-21. Computation of the G Test 
Statistic

Subject
Before 

Treatment
After 

Treatment Change Contribution

1 100 110 + 10 + 1
2 95 96 + 1 + 1
3 120 100 - 20 0
4 111 123 + 12 + 1

  TABLE 10-20. HRBS Sex Composite Score

Non-problem Gambling  
Substance Abusers

Problem Gambling  
Substance Abusers

12 14
10 15
11 15
10 16
13 17
10 15
14 15
11 14
9 13
9 13
9 14

12 13
13 12
11

10-8 In his continuing effort to become famous, the author 
of an introductory biostatistics text invented a new way to 
test if some treatment changes an individual’s response. 
Each experimental subject is observed before and after 

treatment, and the change in the variable of interest is 
computed. If this change is positive, we assign a value of +1 
to that subject; if it is negative, we assign a value of zero 
(assume that there are never cases that remain unchanged). 
The soon-to-be famous G test statistic is computed by 
summing up the values associated with the individual sub-
jects. For example, for the data in Table 10-21, G = 1 + 1 + 
0 + 1 = 3. Is G a legitimate test statistic? Explain briefly. If so, 
what is the sampling distribution for G when n = 4? n = 6? 
Can you use G to conclude that the treatment had an effect 
in the data given above with P < .05? How confident can you 
be about this conclusion? Construct a table of critical values 
for G when n = 4 and n = 6.
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11
How to Analyze  
Survival Data

the study for varying lengths of follow-up that allows 
for the fact that the more time that passes after treat-
ment the more likely it is that there would be the out-
come of interest. We now turn our attention to developing 
procedures for such data.

The most common type of study in which we have 
incomplete knowledge of the outcome are clinical trials or 
survival studies in which individuals enter the study and 
are followed up over time until some event — typically 
death or development of a disease — occurs. Since such 
studies do not go on forever, it is possible that the study 
will end before the event of interest has occurred in all the 
study subjects. In such cases, we have incomplete informa-
tion about the outcomes in these individuals. In clinical tri-
als it is also common to lose track of patients who are being 
observed over time. Thus, we would know that the patient 
was free of disease up until the last time that we observed 
them, but we do not know what happened later. In both 
cases, we know that the individuals in the study were event 
free for some length of time, but not the actual time to an 

All the methods that we have discussed so far require 
“complete” observations, in the sense that we know the 
outcome of the treatment or intervention we are study-
ing. For example, in Chapter 5 we considered a study 
that compared the rate of filing advance directives in 
people who received in-person counseling or written 
instructions (Table 5-1). We compared these two groups 
of people by computing the expected pattern of throm-
bus formation in each of the two comparison groups 
under the null hypothesis that there was no difference in 
the rate of thrombus formation in the two treatment 
groups, then used the chi-square test statistic to examine 
how closely the observed pattern in the data matched the 
expected pattern under the null hypothesis of no treat-
ment effect. The resulting value of c2 was “big,” so we 
rejected the null hypothesis of no treatment effect and 
concluded that aspirin reduced the risk of thrombus for-
mation. In this study we knew the outcome in all the 
people in the study after a fixed length of time following 
treatment. Indeed, in all the methods we have considered 
in this book so far, we knew the outcome of the variable 
under study for all the individuals in the study being 
analyzed. There are, however, situations, in which we do 
not know the ultimate outcome for all the individuals in 
the study because the study ended before the final out-
come had been observed in all the study subjects or 
because the outcome in some of the individuals is not 
known.* In addition, it would be desirable to take into 
account the outcomes in people who were enrolled in 

*Another reason for not having all the data would be the case of missing 
data, in which samples are lost because of experimental problems or 
errors. Missing data are analyzed using the same statistical techniques as 
complete data sets, with appropriate adjustments in the calculations to 
account for the missing data. For a complete discussion of the analysis of 
studies with missing data, see Glantz S, Slinker B. Primer of Applied 
Regression and Analysis of Variance, 2nd ed. New York: McGraw-Hill; 2001.
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event. These people are lost to follow-up; such data are 
known as censored data.* Censored data are most com-
mon in clinical trials or survival studies.

  �CENSORING ON PLUTO

The tobacco industry, having been driven farther and far-
ther from Earth by protectors of the public health, invades 
Pluto and starts to promote smoking in bars. Since it is 
very cold on Pluto, Plutonians spend most of their time 
indoors and begin dropping dead from the secondhand 
tobacco smoke in bars. Since it would be unethical to pur-
posely expose Plutonians to secondhand smoke, we will 
simply observe how long it takes Plutonians to drop dead 
after they begin to be exposed to secondhand smoke in 
bars.

Figure 11-1A shows the observations for 10 nonsmok-
ing Plutonians selected at random and observed over the 
course of a study lasting for 15 Pluto months. Subjects 
entered the study when they started hanging out at 
smoky bars, and they were followed-up until they 
dropped dead or the study ended. As with many survival 
studies, individuals were recruited into the study at vari-
ous times as the study progressed. Of the 10 subjects, 7 
died during the period of the study (A, B, C, F, G, H, and 
J). As a result, we know the exact length of time that they 
lived after their exposure to secondhand smoke in bars. 
These observations are uncensored. In contrast, two of the 
Plutonians were still alive at the end of the study (D and 
I); we know that they lived at least until the end of the 
study, but do not know how long they lived after being 
exposed to secondhand smoke. In addition, Plutonian E 
was vaporized in a freak accident while on vacation 
before the study was completed, so was lost to follow-up. 
We do know, however, that these individuals lived at 
least as long as we observed them. These observations are 
censored.

Figure 11-1B shows the data in another format, where 
the horizontal axis is the length of time that each subject 
is observed after starting exposure to secondhand smoke, 
as opposed to calendar time. The Plutonians who died by 
the end of the study have a solid point at the end of the 
line; those that were still alive at the end of the observation 
period are indicated with a lighter point. Thus, we know 
that Plutonian A lived exactly 7 months after starting to go 
to a smoky bar (an uncensored observation), whereas Plu-
tonian D lived at least 12 months after hanging out in a 
smoky bar (a censored observation).

This study has the necessary features of a clinical 
follow-up study:

•	 There is a well-defined starting time for each subject 
(date smoking started in this example or date of diagno-
sis or medical intervention in a clinical study).

•	 There is a well-defined end point (death in this example 
or relapse in many clinical studies).

•	 The subjects in the study are selected at random from a 
larger population of interest.

If all subjects were studied for the same length of time 
or until they reached a common end point (such as death), 
we could use the methods of Chapters 5 or 10 to analyze 
the results. These methods require researchers to assess the 
outcomes at a fixed time follow the intervention, then clas-
sify each subject as either having or not having the out-
come of interest or not. Unfortunately, in clinical studies 
these situations often do not exist. The fact that the study 
period often ends before all the subjects have reached the 
end point makes it impossible to know the actual time that 
all the subjects reach the common end point. In addition, 
because subjects are recruited throughout the duration of 
the study, the follow-up time often varies for different sub-
jects. These two facts require that we develop new 
approaches to analyzing these data that explicitly take into 
account the length of follow-up when assessing outcomes. 
The first step is to characterize the pattern of the occurrence 
of end points (such as death). This pattern is quantified 
with a survival curve. We will now examine how to charac-
terize survival curves and test hypotheses about them.

  �ESTIMATING THE SURVIVAL CURVE

When discussing survival curves, one often considers death 
the end point — hence, the name survival curves — but any 
well-defined end point can be used. Other common end 
points include relapse of a disease, need for additional 

*More precisely, these observations are right censored because we know 
the time the subjects entered the study, but not when they died (or expe-
rienced the event we are monitoring). It is also possible to have left cen-
sored data, when the actual survival time is larger than that observed, 
such as when patients are studied following surgery, and the precise dates 
at which some patients had surgery before the beginning of the study are 
not known. Other types of censoring can occur when studies are designed 
to observe subjects until some specified fraction (say, half) die. We will 
concentrate on right censored data, since that is what generally comes up 
in biomedical studies.
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treatment, or failure of a mechanical component of a 
machine. Survival curves can also be used to study the 
length of time to desirable events as well, such as time to 
pregnancy in couples having fertility problems. We will 
generally talk in terms of the death end point, recognizing 
that these other end points are also possible.

The parameter of the underlying population we seek to 
estimate is the survival function, which is the fraction of 
individuals who are alive at time 0 who are surviving at 
any given time. Specifically,

the survival function, S (t), is the probability of an 
individual in the population surviving beyond time t.

In mathematical terms, the survival function is

S t( )=

Number of individuals surviving
longer than time

Total number of individuals in

t

population

Figure 11-2 shows a hypothetical survival function for 
a population. Note that it starts at 1 (or 100% alive) at 
time t = 0 and falls to 0% over time, as members of the 
population die off. The time at which half the population 
is alive and half is dead is called the median survival time.

Our goal is to estimate the survival function from a 
sample. Note that it is only possible to estimate the entire 
survival curve if the study lasts long enough for all mem-
bers of the sample to die. When we are able to follow every 
member of a sample until all of them die, estimating the 
survival curve is easy: Simply compute the fraction of sur-
viving individuals at each time someone dies. In this case, 
the estimate of the survival function from the data would 
simply be

Ŝ t( )=

Number of individuals surviving
longerr than time

Total number of individuals i

t

nn sample

A

B

FIGURE 11-1. (A) This graph shows the observations 
in our study of the effect of hanging out in a smoky 
bar on Plutonians. The horizontal axis represents 
calendar time, with Plutonians entering the study at 
various times, when tobacco smoke invades their 
bars. Solid points indicate known times. Lighter 
points indicate the time at which observations are 
censored. Seven of the Plutonians die during the 
study (A, B, C, F, G, H, and J), so we know how long 
they were breathing secondhand smoke when they 
expired. Two of the Plutonians were still alive when 
the study ended at time 15 (D and I), and one (E) 
was lost to observation during the study, so we know 
that they lived at least as long as we were able to 
observe them, but do not know their actual time of 
death. (B) This graph shows the same data as panel 
A, except that the horizontal axis is the length of time 
each subject was observed after they entered the 
study, rather than calendar time.
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where ˆ( )S t is the estimate of the population survival func-
tion computed from the observations in the sample.

Unfortunately, as we have already seen on Pluto, we 
often do not know the length of time every individual in 
the sample lives, so we cannot use this approach. In par-
ticular, we need a method to estimate the survival curve 
from real data in the presence of censoring, when we do 
not know the precise times of death of all the individuals 
in the sample. To estimate the survival function from cen-
sored data, we need to compute the probability of surviv-
ing at each time we observe a death, based on the number 
of individuals known to be surviving immediately before 
that death.

The first step in estimating the survival function is to 
list all the observations in the order of the time of death or 
the last available observation for each individual. Table 
11-1 shows these results for the data in Figure 11-1, in the 
order that death or loss to follow up occurred. Uncensored 
observations (where the actual time of death is known) are 
listed before censored observations. Censored observations 
are indicated with a “+,” indicating that the time of death 
is some unknown time after the last time at which the sub-
ject was observed. For example, the first death took place 
(Plutonian J) at time 2, and the second death (Plutonian 
H) took place at time 6. Two Plutonians (A and C) died at 
time period 7, and one more observation (Plutonian I) 
after time 7. Thus, we know that Plutonian I lived longer 
than J, H, A, and C, but we do not know how much longer.

The second step is to estimate the probability of death 
within any time period, based on the number of subjects 
that survive to the beginning of each time period. Thus, just 

before the first Plutonian (J) dies at time 2, there are 10 
Plutonians alive right before J dies. Since one dies at time 2, 
there are 10 − 1 = 9 survivors. Thus, our best estimate of the 
probability of surviving past time 2 if alive just before time 2 is

Fraction alive just before 
time 2 surviving past time 2

=
−

= − = =
n d

n
2 2

2

10 1

10

9

10
0 900.

where n2 is the number of individuals alive just before time 
2 and d2 is the number of deaths at time 2. At the begin-
ning of the time interval ending at time 2, 100% of the 
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FIGURE 11-2. All population survival curves begin at 
1 (100%) at time 0, when all the individuals in the 
study are alive, and falls to 0 as individuals die over 
time. The time at which 50% of the population has 
died is the median survival time.

  �TABLE 11-1. Pattern of Deaths over Time for 
Plutonians after Starting to Go to Smoky Bars

Plutonian
Survival 
Time, ti

Number Alive 
at Beginning 
of Interval, ni

Number of 
Deaths at 

End of 
Interval, di

J 2 10 1
H 6 9 1
A and C 7 8 2
I 7+
F 8 5 1
G 9 4 1
E 11+
B 12 2 1
D 12+
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Plutonians are alive, so the estimate of the cumulative sur-
vival rate at time 2, ˆ( ),S 2 is 1.000 × 0.900 = 0.900.

Next, we move to the time of the next death, at time 6. 
One Plutonian dies at time 6 and there are 9 Plutonians 
alive immediately before time 6. The estimate of the prob-
ability of surviving past time 6 if one is alive just before 
time 6 is

Fraction alive just before 
time 6 surviving past time 6

=
−

= − = =
n d

n
6 6

6

9 1

9

8

9
0 889.

At the beginning of the time interval ending at time 6, 
90% of the Plutonians are alive, so the estimate of the 
cumulative survival rate at time 6, ˆ( ),S 6 is 0.900 × 0.889 = 
0.800. Table 11-2 summarizes these calculations.

Likewise, just before time 7 there are 8 Plutonians alive 
and 2 die at time 7. Thus,

Fraction alive just before 
time 7 surviving past time 7

=
−

= − = =
n d

n
7 7

7

8 2

8

6

8
0 750.

At the beginning of the time interval ending at time 7, 
80% of the Plutonians are alive, so the estimate of the 
cumulative survival rate at time 7, ˆ( )S 7 , is 0.800 × 0.750 = 
0.600.

Up to this point, the calculations probably seem unnec-
essarily complex. After all, at time 7 there are 6 survivors 
out of 10 original individuals in the study, so why not sim-
ply compute the survival estimate as 6/10 = 0.600? The 
answer to this question becomes clear after time 7, when 

we encounter our first censored observation. Because of 
censoring, we know that Plutonian I died sometime after 
time 7, but we do not know exactly when.

The next known death occurs at time 8, when Pluto-
nian F dies. Because of the censoring of Plutonian I, who 
was last observed alive at time 7, we do not know whether 
this individual is alive or dead at time 8. As a result, we 
must drop Plutonian I from the calculation of the survival 
function. Just before time 8, there are 5 Plutonians known 
to be alive when one dies at time 8, so, following the pro-
cedure outlined previously

Fraction alive just before 
time 8 surviving past time 8

=
−

= − = =
n d

n
8 8

8

5 1

5

4

5
0 800.

At the beginning of the time interval ending at time 8, 
60% of the Plutonians are known to be alive, so the estimate 
of the cumulative survival rate at time 8, ˆ( )S 8 , is 0.600 × 
0.800 = 0.480. Because of the censoring, it would be 
impossible to estimate the survival function based on all 
the Plutonians who initially entered the study.

Table 11-2 presents the remainder of the computations 
to estimate the survival curve. This approach is known as 
the Kaplan–Meier product-limit estimate of the survival 
curve. The general formula for the Kaplan–Meier product-
limit estimate of the survival curve is

ˆ( )S t
n d

nj
i i

i

=
−





Π

  TABLE 11-2. Estimation of Survival Curve for Plutonians after Starting to Go to Smoky Bars

Plutonian
Survival 
Time, ti

Number Alive at 
Beginning of 
Interval, ni

Number of 
Deaths at End 
of Interval, di

Fraction Surviving  
Interval, (ni − di)/ni

Cumulative  
Survival Rate, Ŝ (t)

J 2 10 1 0.900 0.900
H 6 9 1 0.889 0.800
A and C 7 8 2 0.750 0.600
I 7+
F 8 5 1 0.800 0.480
G 9 4 1 0.750 0.360
E 11+
B 12 2 1 0.500 0.180
D 12+
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where there are ni individuals alive just before time ti and 
di deaths occur at time ti  . The P symbol indicates the 
product* taken over all the times, ti , at which deaths 
occurred up to and including time t j. (Note that the sur-
vival curve is not estimated at the times of censored obser-
vations because no known deaths occur at those times.) 
For example,

ˆ( ) .S 7
10 1

10

9 1

9

8 2

8
0 60= −





−





−





= 00

Figure 11-3 shows a plot of the results. By convention, 
the survival function is drawn as a series of step changes, 
with the steps occurring at the times of known deaths. The 
curve ends at the time of the last observation, whether 
censored or not. Note that the curve, as all survival curves, 
begins at 1.0 and falls toward 0 as individuals die. Because 
one individual is still alive at the end of the study period, 
the data are censored and the estimated survival curve 
does not reach 0 during the time observations were 
available.

Median Survival Time
It is often desirable to provide a statistic that summarizes 
a survival curve with a single number. Because the sur-
vival times tend to be positively skewed, the median sur-
vival time is generally used. After the survival curve has 
been estimated, it is simple to estimate the median sur-
vival time.

The median survival time is defined to be the smallest 
observed survival time for which the estimated sur-
vival function is less than .5.†

For example, in our study of the effect of secondhand 
smoke on Plutonians, the median survival time is 8 months, 
because that is the first time at which the survival function 
drops below .5. (It equals .480.) If fewer than half the indi-
viduals in the study die before the end of the study, it is not 
possible to estimate the median survival time. Other percen-
tiles of the survival time are estimated analogously.

Standard Errors and Confidence Limits  
for the Survival Curve
Like all statistics, which are based on random samples drawn 
from underlying populations, there is a sampling distribu-
tion of the statistic around the population parameter, in this 
case, the true survival function, S (t). The standard deviation 
of the sampling distribution is estimated by the standard 
error of the survival function. The standard error of the esti-
mate of the survival curve can be estimated with the follow-
ing equation, known as Greenwood’s formula:‡

s S t
d

n n dS t j
i

i i i
j

ˆ( )
ˆ( )

( )
=

−∑

where the summation (indicated by Σ) extends over all 
times, ti, at which deaths occurred up to and including time 

*The Π symbol for multiplication is used similarly to the symbol Σ for 
sums.

†An alternative approach is to connect the two observed values above and 
below .5 with a straight line and read the time that corresponds to ˆ( )S t  = .5 
off the resulting line.
‡For a derivation of Greenwood’s formula, see Collett D. Modelling Sur-
vival Data in Medical Research. London: Chapman and Hall; 1994, 22–26.
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FIGURE 11-3. The survival curve for Plutonians 
hanging out in smoky bars, computed from the data 
in Table 11-1 as outlined in Table 11-2. Note that 
the curve is a series of horizontal lines, with the 
drops in survival at the times of known deaths. The 
curve ends at 12 months because that is the 
survival time of the last person known to be alive is 
at 12 months (Plutonian D).
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tj . As with estimates of the survival curve itself, the standard 
error is only computed using times at which actual deaths 
occur. For example, the standard error for the estimated 
value of the survival function for the Plutonians going to 
smoky bars at 7 months is (using the results from Table 11-2)

sŜ( ) .
( ) ( ) ( )

.7 600
1

10 10 1

1

9 9 1

2

8 8 2
155=

−
+

−
+

−
=

Table 11-3 shows all the computations for the standard 
errors of the survival curve using the data in Table 11-2.

The standard error can be used to compute a confidence 
interval for the survival function, just as we used the standard 
error to compute a confidence interval for rates and propor-
tions in Chapter 7. Recall that we defined the 100 (1 − α) 
percent confidence interval for a proportion to be

ˆ ˆˆ ˆp z s p p z sp p− < < +α α

where zα is the two-tail critical value of the standard nor-
mal distribution that defines the most α extreme values,
p̂ is the observed proportion with the characteristic of 
interest, and sp̂ is its standard error. Analogously, we define 
the 100 (1 - α) percent confidence interval for the survival 
curve at time tj to be

ˆ( ) ( ) ˆ( )ˆ( ) ˆ( )S t z s S t S t z sj S t j j S tj j
− < < +α α

To obtain the 95% confidence intervals, α = 0.05, and zα = 
1.960. Table 11-3 and Figure 11-4 show the estimated sur-
vival curve for Plutonians exposed to secondhand smoke in 
bars. Note the confidence interval widens as time progresses 
because the number of individuals remaining in the study 
that form the basis for the estimate of S(t) falls as people die.

As with computation of the confidence intervals for 
rates and proportions, this normal approximation works 

well when the observed values of the survival function are 
not near 1 or 0, in which case the confidence interval is no 
longer symmetric (see Fig. 7-4 and the associated discus-
sion). As a result, applying the previous formula for values 
of ˆ( )S t near 1 or zero will yield confidence intervals that 
extend above 1 or below 0, which cannot be correct. From 
a pragmatic point of view, one can often simply truncate 
the intervals at 1 and 0 without introducing serious errors.*

  �COMPARING TWO SURVIVAL CURVES†

The end goal of much of medical practice is to prolong life, 
so the need to compare survival curves for groups of people 
receiving different treatments naturally arises in many clin-
ical studies. We discuss how to compare the survival curves 
for two groups of different patients receiving different 
treatments. The null hypothesis we will test is that the treat-
ments have the same effect on the pattern of survival, that 

*A better way to deal with this problem is to transform the observed 
survival curve according to ln [-ln ˆ( )S t ], which is not bounded by 0 and 
1, compute the standard error of the transformed variable, then trans-
form the result back into the survival function. The standard error of the 
transformed survival function is

s
S t

d

n n dS
i

i i i
ln[ ln (y)] 2ln

− =
−∑ˆ

[ ˆ( )] ( )

1

The 100 (1−α) percent confidence interval for S (t) is

ˆ( ) ( ) ˆ( )
exp( ) exp([ ˆ( )]S t S t S t

z s zS t− +− < <α ln ln ααs S tln ln[ ˆ( )])−

†There are methods for comparing more than two survival curves that are 
direct generalizations of the methods discussed in this book. The com-
putations, however, require a computer and the use of more advanced 
mathematical notation (in particular, matrix notation), which is beyond 
the scope of this text.
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FIGURE 11-4. Survival curve for Plutonians hanging 
out in smoky bars, together with the 95% confidence 
interval (computed in Table 11-3). The upper and 
lower bounds of the 95% confidence interval are 
shown as light lines.



  �TABLE 11-3. Estimation of Standard Error of Survival Curve and 95% Confidence Interval (CI) for Survival Curve for Plutonians after 
Starting to Go to Smoky Bars

Plutonian
Survival 
Time, ti

Number Alive 
at Beginning 
of Interval, ni

Number of 
Deaths at 

End of 
Interval, di

Fraction 
Surviving  
Interval, 

(ni − di)/ni

Cumulative 
Survival 

Rate, Ŝ(t)

d

n (n d )
i

i i i
−−

Standard 
Error, Sŝ (t)

Lower 
95% CI

Upper 
95% CI

J 2 10 1 0.900 0.900 0.011 0.095 0.714 1.000*
H 6 9 1 0.889 0.800 0.014 0.126 0.552 1.000*
A and C 7 8 2 0.750 0.600 0.042 0.155 0.296 0.904
I 7+
F 8 5 1 0.800 0.480 0.050 0.164 0.159 0.801
G 9 4 1 0.750 0.360 0.083 0.161 0.044 0.676
E 11+
B 12 2 1 0.500 0.180 0.500 0.151 0.000* 0.475
D 12+

*The computed values were truncated at 1 and 0 because the survival function cannot go above 1 or below 0.
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3

6
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is, that the two groups of people are drawn from the same 
population. If all individuals in the study are followed up 
for the same length of time and there are no censored 
observations, we could simply analyze the data using con-
tingency tables as described in Chapter 5. If all individuals 
are followed up until death (or whatever the defining event 
is), we could compare the time to deaths observed in the 
different groups using nonparametric methods, such as the 
Mann-Whitney rank-sum test or Kruskal-Wallis analysis of 
variance based on ranks, described in Chapter 10. Unfortu-
nately, in clinical studies of different treatments, these situ-
ations rarely hold. People are often lost to follow-up and the 
study often ends while many of the people in the study are 
still alive (or event free). As a result, some of the observa-
tions are censored and we need to develop appropriate sta-
tistical hypothesis testing procedures that will account for 
the censored data. We will use the log rank test.

There are three assumptions that underlie the log rank 
test.

1.	 The two samples are independent random samples.
2.	 The censoring patterns for the observations are the 

same in both samples.
3.	 The two population survival curves exhibit propor-

tional hazards, so that they are related to each other ac-
cording to S t S t2 1( ) [ ( )]= ψ where ψ is a constant called 
the hazard ratio.

Note that if the two survival curves are identical, ψ = 1. 
If ψ < 1, people in group 2 die more slowly than people in 
group 1, and if ψ > 1, people in group 2 die more quickly 
than people in group 1. The hazard function is the proba-
bility that an individual who has survived until time t dies 
at time t.* Hence, the assumption of proportional hazards 

means that the probability of dying at time t for individu-
als who have lived up to that point is a constant propor-
tion between the two test groups.

Bone Marrow Transplantation to �
Treat Adult Leukemia
Acute lymphoblastic leukemia is a form of cancer in which 
a cancerous mutation of a lymph cell leads to greatly 
increased numbers of white blood cells (leukocytes). 
These leukemic white blood cells, however, are usually not 
functional in terms of the usual protections that white 
blood cells provide the body. At the same time, the cancer-
ous tissue usually spreads to the bone marrow, where it 
interferes with the normal production of red blood cells, 
together with other adverse effects. The destruction of the 
bone marrow’s ability to produce blood cells often leads 
to severe anemia (lack of red blood cells), which is one of 
the most common reasons people with this disease die.

This form of leukemia is treated through a combination 
of radiation and chemotherapy, which is effective in pre-
venting recurrence in children. In adults, however, the 
chances of recurrence of the disease are high, even after the 
disease has been put into remission through chemotherapy 
and radiation. The chemotherapy and radiation are toxic 
not only to the cancer cells but also to many normal cells. In 
particular, at the doses used in adults, these treatments often 
destroy the normal bone marrow’s ability to produce red 
blood cells. This side effect of the cancer treatment is treated 
by giving the person with leukemia a bone marrow trans-
plant to reestablish function of the bone after the end of the 
chemotherapy and radiation. This bone marrow transplant 
ideally comes from a sibling who has the same type of bone 
marrow, a so-called allogenic transplant. Unfortunately, 
not everyone has an available sibling with matching tissue 
type to serve as a donor. Another option is to remove 
bone marrow from the person with cancer, treat the mar-
row with drugs in an effort to kill any residual cancer 
cells, preserve the “cleaned” marrow, and then inject it 
back into the person after the end of chemotherapy and 
radiation, a so-called autologous transplant.† N. Vey and 

*The mathematical definition of the hazard function is

h t t( ) lim= ∆ →0

Probability an individual alive
at tiime dies between and +t t t t

t

∆
∆

The hazard function is related to the survival function according to

h t
f t

S t
( )

( )

( )
=

where f (t) is the probability density function corresponding to the failure 
function, F (t) = 1 − S (t). The failure function begins at 0 and increases 
to 1, as all the members of the population die. For a discussion of these 
representations of the survival curve and their use, see Lee ET. Statistical 
Methods for Survival Data Analysis, 3rd ed. New York: Wiley; 2003.

†Note that, because of ethical considerations and the fact that many of the 
people simply did not have appropriate siblings to serve as bone marrow 
donors, the investigators could not randomize the people in the study. 
They did, however, demonstrate that the two groups of people were simi-
lar in important clinical respects. This procedure is a common and rea-
sonable way to deal with the fact that sometimes randomization is simply 
not possible. (See further discussion of these issues in Chapter 12.)
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colleagues* asked the question: Is there a difference in the 
survival patterns of the people who receive allogenic bone 
marrow transplants compared to those who receive autolo-
gous transplants?

To be included in the study, patients had to have a clear 
diagnosis of acute lymphoblastic leukemia that involved at 
least 30% of their bone marrow and had to have achieved a 
first complete remission before receiving their bone marrow 
transplant. Everyone was treated using the same treatment 
protocols. Patients who had a willing sibling with compati-
ble bone marrow received an allogenic transplant and the 
remaining people received autologous transplants. Vey and 
colleagues observed the two groups of people for 11 years.

Table 11-4 shows the data we seek to analyze, Table 11-5 
shows the computation of the survival curves for the two 
groups of people, and Figure 11-5 shows the survival 
curves. Examining this figure suggests that an allogenic 
transplant from a sibling leads to better survival than an 
autologous transplant from the cancer patient to himself or 
herself. The question remains, however, whether this differ-
ence is simply due to random sampling variation. Our null 
hypothesis is that there is no difference in the underlying 
populations represented by the two treatment groups.

The first step in constructing the test statistic used in 
the log rank test is to consider the patterns of death in the 
two groups at each time a death occurs in either group. 

*Vey N, Blaise D, Stoppa AM, Bouaballah R, Lafage M, Sainty D, Cowan 
D, Viens P, Lepeu G, Blanc AP, Jaubert D, Gaud C, Mannoni P, Camerlo J, 
Resbeut M, Gastaut JA, Maraninchi D. Bone marrow transplantation in 
63 adult patients with acute lymphoblastic leukemia in first complete 
remission. Bone Marrow Transplant. 1994;14:383–388.
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FIGURE 11-5. Survival curves for adults with 
leukemia who received autologous or allogenic 
bone marrow transplants (according to data in 
Table 11-4; survival curve computations are in 
Table 11-5). The curves extend to 132 months 
because that is the survival time of the last 
observation (even though the subsequent 
observations are censored immediately after  
that time because the study ended).

  �TABLE 11-4. Time to Death (or Lost to Follow-Up) 
for People Receiving Autologous and Allogenic 
Bone Marrow Transplants

Autologous Transplant 
(n = 33)

Allogenic Transplant 
(n = 21)

Month
Deaths or Lost 
to Follow-up Month

Deaths or Lost 
to Follow-up

1 3 1 1
2 2 2 1
3 1 3 1
4 1 4 1
5 1 6 1
6 1 7 1
7 1 12 1
8 2 15+ 1

10 1 20+ 1
12 2 21+ 1
14 1 24 1
17 1 30+ 1
20+ 1 60+ 1
27 2 85+ 2
28 1 86+ 1
30 2 87+ 1
36 1 90+ 1
38+ 1 100+ 1
40+ 1 119+ 1
45+ 1 132+ 1
50 3
63+ 1
132+ 2
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  TABLE 11-5. �Computation of the Two Survival Curves Using the Data in Table 11-4

Autologous Bone Marrow Transplant Allogenic Bone Marrow Transplant

Month, ti

Number of 
Deaths at End 
of Interval di 

or Lost to  
Follow-up

Number 
Alive at Be-
ginning of 
Interval, ni

Fraction  
Surviving 
Interval,  

(ni − di)/ni

Cumulative 
Survival 

Rate, 
Ŝautologous (t) Month ti

Number of 
Deaths at end 
of Interval, di 

or Lost to 
Follow-up

Number 
Alive at  

Beginning of 
Interval, ni

Fraction 
Surviving  
Interval,  

(ni − di)/ni

Cumulative 
Survival Rate, 

Ŝallogenic (t)

1 3 33 0.909 0.909 1 1 21 0.952 0.952
2 2 30 0.933 0.848 2 1 20 0.950 0.904
3 1 28 0.964 0.817 3 1 19 0.947 0.857
4 1 27 0.963 0.787 4 1 18 0.944 0.809
5 1 26 0.962 0.757 6 1 17 0.941 0.762
6 1 25 0.960 0.727 7 1 16 0.938 0.714
7 1 24 0.958 0.697 12 1 15 0.933 0.666
8 2 23 0.913 0.636 15+ 1 14

10 1 21 0.952 0.605 20+ 1 13
12 2 20 0.900 0.545 21+ 1 12
14 1 18 0.944 0.514 24 1 11 0.909 0.605
17 1 17 0.941 0.484 30+ 10
20+ 1 16 60+ 1 9
27 2 15 0.867 0.420 85+ 2 8
28 1 13 0.923 0.388 86+ 1 6
30 2 12 0.833 0.323 87+ 1 5
36 1 10 0.900 0.291 90+ 1 4
38+ 1 9 100+ 1 3
40+ 1 8 119+ 1 2
45+ 1 7 132+ 1 1
50+ 3 6 0.500 0.145
63+ 1 3

132+ 2 2



  TABLE 11-6. Computation of Log Rank Test to Compare Survival Curves for Autologous and Allogenic Bone Marrow Transplants

Autologous Allogenic Total

Month, ti

Deaths 
at End of  
Interval, 
dautologous,i

Number 
Alive at  

Beginning 
of  

Interval, 
nautologous,i

Deaths at 
End  
of  

Interval, 
dallogenic,i 

Number 
Alive at  

Beginning 
of  

Interval, 
nallogenic,i

Deaths 
at End of     
Interval, 

dtotal,i

Number 
Alive at 

Beginning 
of  

Interval, 
ntotal,i

Fraction 
of All 

People 
who Die 
dtotal, i /

ntotal, i = fi

Expected 
Number of 
Autologous 

Deaths, 
nautologous,i fi = ei

Observed 
Minus  

Expected  
Autologous 

Deaths,  
dautologus, i - ei

Contribution 
to Standard 
Error of UL 
(see text)

1 3 33 1 21 4 54 0.074 2.444 0.556 0.897
2 2 30 1 20 3 50 0.060 1.800 0.200 0.691
3 1 28 1 19 2 47 0.043 1.191 −0.191 0.471
4 1 27 1 18 2 45 0.044 1.200 −0.200 0.469
5 1 26 0 17 1 43 0.023 0.605 0.395 0.239
6 1 25 1 17 2 42 0.048 1.190 −0.190 0.470
7 1 24 1 16 2 40 0.050 1.200 −0.200 0.468
8 2 23 0 15 2 38 0.053 1.211 0.789 0.465

10 1 21 0 15 1 36 0.028 0.583 0.417 0.243
12 2 20 1 15 3 35 0.086 1.714 0.286 0.691
14 1 18 0 14 1 32 0.031 0.563 0.438 0.246
17 1 17 0 13 1 31 0.032 0.548 0.452 0.248
24 0 15 1 11 1 26 0.037 0.593 −0.593 0.241
27 2 15 0 10 2 25 0.080 1.200 0.800 0.460
28 1 13 0 10 1 23 0.044 0.572 0.435 0.246
30 2 12 0 10 2 22 0.091 1.091 0.909 0.472
36 1 10 0 9 1 19 0.053 0.526 0.474 0.249
50 3 6 0 9 3 15 0.200 1.200 1.800 0.617

Total UL = 6.575 s2
UL = 7.884

2
4

0
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Table 11-6 summarizes all the deaths actually observed in 
the study using the information in Table 11-5. (Censored 
observations are not listed in this table.) One month fol-
lowing the bone marrow transplantation, 3 of the 33 peo-
ple who had autologous transplants died, compared to 1 
of 21 of the people who had allogenic transplants. How 
does this pattern compare with what would be expected 
by chance?

There are a total of 3 + 1 = 4 deaths out of a total of 
33 + 21 = 54 people alive before the end of month 1 in the 
study. Thus, 4/54 = 0.074 = 7.4% of all the people died, 
regardless of the kind of bone marrow transplant that was 
received. Thus, if the type of bone marrow transplantation 
did not matter, we would expect that 7.4% of the 33 peo-
ple who received autologous transplants, 0.074 × 33 = 
2.444 people, to die at the end of month 1. This expected 
number of deaths compares to the observed 3 autologous 
transplant patients who died at month 1. If there is no 
difference between the patterns of survival between the 
two treatments, the observed and expected number of 
deaths at each time of a death should be similar for the 
autologous transplant patients.

To quantify the overall difference between the observed 
and expected number of deaths in the autologous group, 
we first compute the expected number of deaths at the 
time each death is observed in either group, then sum 
these differences up. In terms of equations, the expected 
number of deaths in the autologous group at time ti is

e
n

ni
i

autologous,
autologous, total

total

d

where n iautologous, is the number of people who are known 
to be alive in the autologous transplant group immediately 
before time ti , dtotal is the total number of deaths in both 
groups at time ti , and n total is the total number of people 
who are known to be alive at immediately before time ti .

Note that, while we do not explicitly include the cen-
sored observations in our summation, the censored obser-
vations do affect the results because they are included in 
the ns before the time at which they are censored. For 
example, the number of people in the allogenic transplant 
group known to be alive at the beginning of month 17 
drops from 15 to 14 even though there were no known 
deaths in this group at this time because one of the 
patients in this group was lost to observation (censored) 
after month 15. The log rank test uses the censored obser-
vations up to the time that they are censored because they 
contribute to the number of people at risk when deaths 

occur even though they do not explicitly appear in the 
calculations.

The first part of our test statistic is the sum of the dif-
ferences between the observed and expected number of 
deaths in the autologous transplant group.

U d eL i i= −∑( ),autologous, autologous

where the summation is over all the times at which anyone 
died in either group. For the study we are analyzing, UL = 
6.575 (Table 11-6). If this number is “small,” it would indi-
cate that there is not much difference between the two 
survival curves; if it is “big,” we would reject the null 
hypothesis of no difference and report a difference in the 
survival associated with the two treatments.

As in earlier tests, we need to estimate the uncertainty 
associated with this sum to assess whether it is large. As in 
earlier tests, UL follows a sampling distribution, which is 
approximately normally distributed, with variance*

s
n n d n

U L

2 = autologous, j allogenic, j total, j tot( aal, j total, j

total, j total, j

−

−
∑

d

n n

)

( )2 1

where the summation is over all times at which deaths 
occurred. The last column in Table 11-6 includes these 
computations; sU L

2 7 884= . and sU L
= 2 808. . Finally, our 

test statistic is obtained by dividing the observed value of 
the test statistic by its standard error (the standard devia-
tion of its sampling distribution).

z
U

s
L

U L

= = =6 575

2 808
2 342

.

.
.

The test statistic is approximately normally distributed, 
so we compare its value with the critical values for the nor-
mal distribution (the last row in Table 4-1).† The critical 
value for the most extreme 2% of the normal distribution 
is 2.326, so we reject the null hypothesis of no difference in 
survival, P < .02. The allogenic bone marrow transplants 
are associated with better survival than the autologous 
bone marrow transplants. Bone marrow transplants from 
healthy siblings work better than autologous transplants 
from someone with leukemia to himself or herself.

*For a derivation of this result, see Collett D. Modelling Survival Data in 
Medical Research. London: Chapman and Hall;1994;40–42.
†Some people compute the test statistic as U sL UL

2 2/ . This test statistic fol-
lows the chi-square distribution with 1 degree of freedom. The results are 
identical to those as described in the main text. 

=
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This analysis could be done using either group; we 
simply use autologous transplants because it is the first 
group. Using the allogenic group as the reference group 
would have led to identical results.

The Yates Correction for the Log Rank Test
When we used the normal approximation to test for dif-
ferences between two proportions in Chapters 5 and 10, 
we noted that, while the normal distribution is continu-
ous, the actual sampling distribution of the test statistic 
will be discrete because we were analyzing counts. The 
Yates correction was applied to correct for the fact that 
simply using the normal approximation will yield P values 
that are slightly smaller than they should be. The situation 
is exactly the same for the log rank test, so many statisti-
cians apply the Yates correction to the computation of the 
log rank statistic. The resulting test statistic (using the 
data in Table 11-6) is

z
U

s
L

U L

=
−

= − =
1

2 6 575 500

2 808
2 163

. .

.
.

The value of the test statistic has been reduced from 
2.342 to 2.163, and the associated P value increased to 
P < .05. The conclusion that the two types of bone mar-
row transplants have different effects on survival, however, 
remains unchanged (at α = .05).

  �GEHAN’S TEST

The log rank test is not the only procedure available to 
compare two survival curves. Another procedure, known 
as Gehan’s test is a generalization of the rank sum test. As 
discussed below, however, the log rank test is generally 
considered to be a superior method because Gehan’s test 
can be dominated by a small number of early deaths. 
Gehan’s test is computed by comparing every observation 
in the first treatment with every observation in the second 
treatment. For each comparison, score +1 if the second 
treatment definitely has a longer survival time than the 
first treatment, −1 if the first treatment definitely has a 
longer survival time than the second treatment, and 0 if 
censoring makes it impossible to say which treatment has 
a longer survival time for a given pair. Finally, sum up all 
the scores, to get UW. A simpler way to compute UW is to 
rank all the observations in time, and for each observa-
tion compute R1 as the total number of observations 
whose survival time is definitely less than the current 

observation. Likewise, let R2 be the number of cases 
whose survival time is definitely longer than the current 
observation. (If the observation is censored, you do not 
know the actual survival time, so R2 = 0.) Let h = R1 − R2. 
UW equals the sum of all the hs associated with the first 
treatment group. The standard error of UW equals

s
n n h

n n n nUW
=

+ + −
∑1 2

2

1 2 1 2 1( )( )

Finally, the test statistic

z
U

s
W

UW

=

is compared to the standard normal distribution to obtain 
a P value. (The Yates correction can also be applied to this 
test, just as with the log rank test.)

The log-rank test is also superior to Gehan’s test if the 
assumption of proportional hazards is reasonably satisfied. 
If two survival functions exhibit proportional hazards, 
they will not cross.* Note that, because of random sam-
pling variation, it is possible for the observed survival 
curves to cross, even if the underlying population survival 
functions exhibit proportional hazards.

  �POWER AND SAMPLE SIZE

As with all the other statistical hypothesis tests that we have 
considered, the power, 1 − β, of a log rank test to detect a 
real difference in the survival functions for two treatments 
depends on the size of the difference to be detected, the 
false-positive risk one is willing to accept (Type I error, α), 
and the sample size. Conversely, the sample size required to 
detect a given difference depends on the power one is seek-
ing and the false-positive risk one is willing to accept. For 
a given risk of Type I error and power, larger studies are 
required to detect smaller differences in survival.

In the interest of simplicity, we limit ourselves to esti-
mating the power and sample size for the log rank test and 
assume that there are the same number of individuals in 
each of the test groups.† As with other statistical tests, 

*A quick test for proportional hazards is to plot ln [-ln ˆ ( )S t1 ] and ln [-ln
ˆ ( )S t2 ] against t. If the two lines are parallel, the assumption of propor-
tional hazards is met.
†For a derivation of these results, see Freedman LS. Tables of number of 
patients required in clinical trials using the log rank test. Stat Med. 
1982;1:121–129.
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making the sample sizes equal yields the minimum total 
sample size to detect a given difference or, alternatively, 
yields the maximum power to detect a given difference for 
a given total sample size.

Power
Under the simplifying assumption of equal sample sizes 
just discussed, the power of a survival analysis with n peo-
ple in each treatment group to detect an expected differ-
ence in steady state survival rates S1(∞) and S2(∞) for the 
two groups at the end of the study is 

z z S S n1 2 1 2

1

1
2− = − −

+
− ∞ − ∞β  α

ψ
ψ(upper) ( ) [ ( ) ( )]

where zα (2) is the critical value of the normal distribution 
for a 2 tail test with p = α and z1 − β (upper) is the value of z 
that defines the upper (one tail) value of the normal dis-
tribution corresponding to 1 − β, the desired power. Note 
that since S t S t2 1( ) [ ( )] ,= ψ

ψ =
∞
∞

ln ( )

ln ( )

S

S
2

1

For example, suppose we are thinking of doing a study 
with 20 people in each treatment group in which we wish 
to detect a difference in survival from 30% to 60%. To 
compute the power of this study to detect this difference, 
we obtain zα (2) = z.05(2) = 1.960 from Table 4-1 and compute

Ψ =
∞
∞

= = −
−

=
ln ( )

ln ( )

ln .

ln .

.

.
.

S

S
2

1

6

3

511

1 203
425

Therefore,

z1 1 960
1 425

1 425
2 3− = − −

+
− −β  (upper) .

( . )

( . )
([ . .. )] ) .6 20 065=

From Table 6-2, z1 – β (upper) = .065 defines the upper .47 
of the normal distribution, so the power of this study to 
detect the specified change is .47.

Sample Size
To compute the sample size needed to achieve a given power, 
we first estimate the total number of deaths (or other events 
we are treating as the outcome variable) that must be 
observed. The total number of deaths, d, required is

d z z= −( ) +
−





−α( ) ( )2 1

2
2

1

1β
ψ
ψupper

Once we have the required number of deaths, d, we can 
compute the required sample size, n, for each experimen-
tal group, given

n
d

S S
=

− ∞ − ∞2 1 2( ) ( )

Therefore, we can estimate the sample size based  
on the expected survival in the two treatment groups at 
the end of the study.

For example, suppose we wanted to determine the sam-
ple size necessary to achieve a 1 − β = .80 power in the 
study discussed above in which we wish to detect a differ-
ence in survival from 30% to 60% at the end of the study, 
with α = 0.05 and power, 1 − β = .8. From Table 4-1 zα (2) = 
z.05 (2) = 1.960 from Table 6-2, z1–β (upper) = z.80 (upper) = −.842, 
and, as before, ψ = .425. Substituting into the formula for 
the number of deaths above,

d z z= −( ) +
−
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So, we need a total of 49 deaths. To obtain this number 
of deaths, the number of individuals required in each of 
the two samples would be

n
d

S S
=

− ∞ − ∞
=

− −
=

2

49

2 3 6
44 5

1 2( ) ( ) . .
.

Thus, we need 45 individuals in each group, for a total 
sample size of 90 individuals to achieve the desired power.

  �SUMMARY

This chapter developed procedures to describe outcome 
patterns in clinical trials where people are observed over 
time until a discrete event, such as death, occurs. Such tri-
als are gaining in importance as cost pressures demand 
that medical treatment be demonstrated to be effective. 
Analysis of such data is complicated by the fact that 
because of the very nature of survival studies, some of the 
individuals in the study live beyond the end of the study 
and others are lost to observation because they move or die 
for reasons unrelated to the disease or treatment being stud-
ied. In order to construct descriptive statistics and test 
hypotheses about these kind of data, we used all the available 
information at each time an event occurred. The procedures 
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we describe in this chapter can be generalized to include 
more complicated experimental designs in which several 
different treatments are being studied.* The final chapter 
places all the tests we have discussed in this book in con-
text, together with some general comments on how to 
assess what you read and write.

  �PROBLEMS

11-1 Surgery is an accepted therapeutic approach for 
treating cancer patients with metastases in their lungs. 
Philippe Girard and colleagues† collected data on 35 peo-
ple who had metastases removed from their lungs (see 
Table 11-7). Estimate the survival curve and associated 
95% confidence interval. 

11-2 Taking care of old people on an outpatient basis is 
less costly than caring for them in nursing homes or hos-
pitals, but health professionals have expressed concern 
about how well it is possible to predict clinical outcomes 
among people cared for on an outpatient basis. As part of 
an investigation of predictors of death in geriatric patients, 
Brenda Keller and Jane Potter‡ compared survival in peo-
ple aged 78.4 ± 7.2 (SD) years who scored high on the 

  TABLE 11-7. Survival Data for People with 
Metastatic Lung Cancer

Month
Death or Loss to Follow-up 

during Month

1 1
2 1
3 3
3+ 1
4 1
5 1
6 1
7 2
8 1
9 1

10+ 1
11+ 2
12 2
13 1
15 1
16 3
20 3
21 1
25+ 1
28 1
34 1
36+ 1
48+ 1
56 1
62 1
84 1

  TABLE 11-8. Survival of People with High and 
Low Instrumental Activities of Daily Living

High IADL Scores Low IADL Scores

Month

Death or  
Lost to  

Follow-up Month

Death or 
Lost to 

Follow-up

14 1 6 2
20 2 12 2
24 3 18 4
25+ 1 24 1
28 1 26+ 1
30 2 28 4
36+ 1 32 4
37+ 1 34+ 2
38 2 36 3
42+ 1 38+ 3
43+ 1 42 3
48 2 46+ 2
48 62 47 3

48 2
48+ 23

*The methods we discuss in this chapter are nonparametric methods be-
cause they do not make any assumptions about the shape of the survival 
function. There are also a variety of parametric procedures that one can 
use when you know that the survival function follows a known functional 
form.

†Girard P, et al. Surgery for pulmonary metastases: who are the 10-year 
survivors? Cancer. 1994;74:2791–2797.
‡Keller B, Potter J. Predictors of mortality in outpatient geriatric evalua-
tion and management clinic patients. J Gerontol. 1994;49:M246–M251.
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  TABLE 11-9. Time to a Psychiatric Event for People Being Treated for Bipolar Disorder

Month

Combined Therapy Valpote

At Risk Events Lost At Risk Events Lost

0 110 0 0 110 0 0
3 110 14 0 110 34 0
6 96 17 0 74 18 2
9 77 10 2 56 7 0

12 67 7 0 48 3 1
15 59 4 1 42 6 3
18 53 2 2 36 3 0
21 47 4 4 29 5 4
24 36 1 7 17 0 7
27 20 0 15 6 0 11
30 3 0 17 1 0 5
33 1 0 2 0 0 1
36 0 0 1 0 0 0

Instrumental Activities of Daily Living (IADL) scale and 
those who scored low. Based on the survival data in Table 
11-8, is there a difference in the survival patterns of these 
two groups of people?

11-3 What is the sample size for each experimental group 
to obtain .80 power using a log rank test to detect a sig-
nificant difference (with a = .05) in steady state survival 
rates between .40 and .20?

11-4 The BALANCE investigators who conducted the study 
of drug treatments for bipolar people in Problem 5-9 also 
collected data on when experimental subjects had emergent 
mood episodes for 36 months. Table 11-9 gives the observa-
tions. What is the median time to an event for the two 
treatment groups? Is there a difference in the time history 
of emergent mood events for people receiving the two 
treatments? 
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12
What Do the Data 
Really Show?

The statistical methods we have been discussing permit 
you to estimate the certainty of statements and precision 
of measurements that are common in the biomedical sci-
ences and clinical practice about a population after observ-
ing a random sample of its members. To use statistical 
procedures correctly one needs to use a procedure that is 
appropriate for the study design and the scale (i.e., interval, 
nominal, ordinal or survival) used to record the data. All 
these procedures have, at their base, the assumption that 
the samples were selected at random from the populations 
of interest. If the study as conducted does not satisfy this 
randomization assumption, the resulting P values and 
confidence intervals are meaningless. 

In addition to seeing that the individuals in the sample 
are selected at random, there is often a question of exactly 
what actual populations the people in any given study rep-
resent. This question is especially important and often dif-
ficult to answer when the experimental subjects are 
patients in academic medical centers, a group of people 
hardly typical of the population as a whole. Even so, iden-
tifying the population in question is the crucial step in 
deciding the broader applicability of the findings of any 
study.

  �CELL PHONES: PUTTING ALL 
THE PIECES TOGETHER

Taking all the information we have discussed on cell 
phones and sperm allows us to confidently conclude that 

exposure to cell phones adversely affects sperm. We began 
in Chapter 3 with two human observational studies show-
ing lower sperm motility. The first one* showed a differ-
ence between men with lower and higher cell phone use. 
The second study† improved upon this design by includ-
ing a true control group of men that did not use cell 
phones at all as well as including several levels of use and 
finding a dose–response relationship, with greater reduc-
tions in sperm motility associated with increased levels of 
cell phone use. These two studies, however, were observa-
tional, leaving open the possibility that the relationships 
they elucidated were actually reflecting the effects of some 
unobserved confounding variable. Concern over con-
founding variables is especially acute because all the men 
providing the sperm samples were recruited at fertility 
clinics, so, even though the investigators tried to screen 
out men with other reasons for reproductive problems, 
the possibility remained that something else than expo-
sure to cell phone radiation was causing the reduction in 
sperm motility. 

We increased our confidence that the cell phone radia-
tion was actually affecting sperm when we considered an 

*Fejes I, Závacki Z, Szöllősi J, Koloszár S, Daru J, Kovács L, Pál A. Is there 
a relationship between cell phone use and semen quality? Arch Androl. 
2005;51:385–393.
†Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone 
usage on semen analysis in men attending infertility clinic: an observa-
tional study. Fertil Steril. 2008;89:124–128.
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animal experimental study* that showed that rabbits 
exposed to cell phone radiation had depressed sperm 
motility. Unlike the earlier two human studies, these 
results came from an experiment in which the rabbits 
were randomized to the different treatments and in which 
the investigators controlled the environment, so we can be 
much more confident that the results were the result of 
the cell phone radiation causing the observed changes 
rather than them being a reflection of some unobserved 
confounding variable. The issue of interspecies extrapola-
tion, however, remains.

We addressed this issue in Chapter 8 with the experi-
mental study that exposed sperm from normal men to 
controlled levels of cell phone radiation.† Because the 
investigators recruited healthy men as volunteers – not 
volunteers from men attending a fertility clinic – we can 
be more confident that the sperm were not behaving 
abnormally for other reasons. Because the sperm were 
subjected to controlled irradiation in petri dishes, the 
experiment avoided the possibility that other aspects of 
the volunteer men’s behaviors in conjunction with the cell 
phone use was responsible for the observed effects. The 
fact that there was a dose-response relationship between 
the strength of cell phone exposure (measured as specific 
absorption rate, SAR) and the induction of reactive oxy-
gen species in the sperm, which was, in turn, related to 
sperm DNA damage, provides a biological mechanism for 
the changes observed in the original human observational 
studies. The problem, however, with this experimental 
study is that sperm in petri dishes may respond differently 
than sperm in men.

Thus, we are left with the situation in which we have 
several pieces of evidence on the effects of cell phone 
exposure on sperm, all of which provide some informa-
tion, but none of which is definitive and above criticism. 
The first two studies are realistic because the data come 
from real people using cell phones in real situations, but 
they are observational and the fact that the men being 
studied were attending a fertility clinic could introduce 

unknown confounding variables. The rabbit study was an 
experiment, but rabbits are not people. The study of 
sperm in petri dishes was also an experiment and the 
sperm were from normal volunteers, but the sperm were 
irradiated in petri dishes, not people.

The important thing to do is to consider the evidence as 
a whole. Do all the studies generally point in the same direc-
tion? Are they consistent with each other? Do the experi-
mental studies, which almost always are conducted in 
artificial environments, elucidate the biological mecha-
nisms that explain the observational studies which, while 
conducted in more realistic environments, suffer from 
the limitation that they are observational? Conversely, do 
the observational studies provide results consistent with 
one would expect based on the biology elucidated in the 
experiments?

The more of these questions that you can answer “yes,” 
the more confident that you can be in concluding that the 
exposure (or treatment) causes the outcome. In this case, 
we can be very confident that cell phones are causing 
abnormal sperm behavior.‡

  WHEN TO USE WHICH TEST

We have reached the end of our discussion of different 
statistical tests and procedures. It is by no means exhaus-
tive, for there are many other approaches to problems and 
many kinds of experiments we have not even discussed. 
Nevertheless, we have developed a powerful set of tools 
and laid the groundwork for the statistical methods 
needed to analyze more complex experiments. Table 12-1 
shows that it is easy to place all these statistical hypothesis 
testing procedures this book presents into context by con-
sidering two things: the type of experiment or observational 
study used to collect the data and the scale of measurement.

To determine which test to use, one needs to consider 
the study design. Were the treatments applied to the same 
or different individuals? How many treatments were 
there? Was the study designed to define a tendency for two 
variables to increase or decrease together?

How the response is measured is also important. Were 
the data measured on an interval scale? If so, are you  

*Salama N, Kishimoto T, Kanayama H. Effects of exposure to a mobile 
phone on testicular function and structure in adult rabbit. Int J Androl. 
2010;33:88–94.
†De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobil phone radiation in-
duces reactive oxygen species production and DNA damage in human 
spermatoza in vitro. PLoS One. 2010;4(7):e6446. doi:10.1371/journal.
pone.0006446.

‡The papers used as examples in this book contain additional informa-
tion that supports this statement, as well as the larger literature on this 
topic.



  Table 12-1. �Summary of Some Statistical Methods to Test Hypotheses

Study Design

Scale of  
Measurement

Two Treatment Groups 
Consisting of Different 
Individuals

Three or More  
Treatment Groups  
Consisting of Different 
Individuals

Before and after a  
Single Treatment in 
the Same Individuals

Multiple Treatments in 
the Same Individuals

Association between 
Two Variables

Interval (and drawn 
from normally dis-
tributed popula-
tions*)

Unpaired t test 
(Chapter 4)

Analysis of variance 
(Chapter 3)

Paired t test 
(Chapter 9)

Repeated measures 
analysis of variance 
(Chapter 9)

Linear regression, 
Pearson product- 
moment correlation, 
or Bland-Altman analy-
sis (Chapter 8)

Nominal Chi-square analysis of 
contingency table 
(Chapter 5)

Chi-square analysis of 
contingency table 
(Chapter 5)

McNemar’s test 
(Chapter 9)

Cochrane Q† Relative risk or odds 
ratio (Chapter 5)

Ordinal† Mann-Whitney 
rank-sum test  
(Chapter 10)

Kruskal-Wallis test 
(Chapter 10)

Wilcoxon signed-rank 
test (Chapter 10)

Friedman test  
(Chapter 10)

Spearman rank corre-
lation (Chapter 8)

Survival time Log rank test or 
Gehan’s test 
(Chapter 11)

*If the assumption of normally distributed populations is not met, rank the observations and use the methods for data measured on an ordinal scale.
†Or interval data that are not necessarily normally distributed.

2
4

9
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satisfied that the underlying population is normally dis-
tributed? Do the variances within the treatment groups or 
about a regression line appear equal? When the observa-
tions do not appear to satisfy these requirements — or if 
you do not wish to assume that they do — you lose little 
power by using nonparametric methods based on ranks. 
Finally, if the response is measured on a nominal scale in 
which the observations are simply categorized, one can 
analyze the results using contingency tables. If the nomi-
nal dependent variable is a survival time or the data are 
censored, use survival analysis.

  ISSUES IN STUDY DESIGN

Table 12-1 comes close to summarizing the lessons of this 
book, but there are three important things that it excludes. 
First, as Chapter 6 discussed, it is important to consider 
the power of a test when determining whether or not the 
failure to reject the null hypothesis of no treatment effect 
is likely to be because the treatment really has no effect or 
because the sample size was too small for the test to detect 
the treatment effect. Second, Chapter 7 discussed the 
importance of quantifying the size of the treatment effect 
(with confidence intervals) in addition to the certainty 
with which you can reject the hypothesis that the treat-
ment had no effect (the P value). Third, one must consider 
how the samples were selected and whether or not there 
are biases that invalidate the results of any statistical pro-
cedure, however elegant or sophisticated.

It is through these more subtle aspects of the study 
design that authors (and the sponsors that fund the 
authors) can manipulate the outcomes of a research paper. 
Even with correct statistical calculations, an underpow-
ered study will not detect complications in a clinical trial 
of a new therapy or diseases caused by an environmental 
toxin such as tobacco smoke or cell phone exposure.* 
Establishing an inappropriate comparison group can 
make a test drug look better or worse. When designing or 

assessing a research, it is important to consider these 
potential biases, as well as who sponsored the work and 
the investigators’ relationship with the sponsor.†

  RANDOMIZE AND CONTROL

As already noted, all the statistical procedures assume that 
the observations represent a sample drawn at random from 
a larger population. What, precisely, does “drawn at ran-
dom” mean? It means that any specific member of the pop-
ulation is as likely as any other member to be selected for 
study and, further, that in an experiment any given indi-
vidual is as likely to be selected for one sample group as the 
other (i.e., control or treatment). The only way to achieve 
randomization is to use an objective procedure, such as a 
table of random numbers or a random number generator, 
to select subjects for a sample or treatment group. When other 
criteria are used that permit the investigator (or participant) 
to influence which treatment a given individual receives, one 
can no longer conclude that observed differences are due to 
the treatment rather than biases introduced by the process 
of selecting individuals for an observational study or assign-
ing different individuals to different groups in an experi-
mental study. When the randomization assumption is not 
satisfied, the logic underlying the distributions of the test 
statistics (F, t, c2, z, r, rs, T, W, H, or χr

2) used to quantify 
whether the observed differences between the different 
treatment groups are due to chance as opposed to the treat-
ment fails and the resulting P values (i.e., estimates that the 
observed differences are due to chance) are meaningless.

To reach meaningful conclusions about the efficacy of 
some treatment, one must compare the results obtained in 
the individuals who receive the treatment with an appro-
priate control group that is identical to the treatment 
group in all respects except the treatment. Clinical studies 
often fail to include adequate controls. This omission gen-
erally biases the study in favor of the treatment.

Despite the fact that questions of proper randomization 
and control are really distinct statistical questions, in prac-
tice these two areas are so closely related that we will dis-
cuss them together by considering two classic examples.

†For more details on the issue of how to detect bias and underpowered 
studies and estimate its effects, see Guyat GG, Rennie D, Meade MO, 
Cook DJ. Why study results mislead: bias and random error. In: Users 
Guide to the Medical Literature, 2nd ed. New York: McGraw-Hill; 2008: 
chap 5.

*See, for example, Tsang R, Colley L, Lynd LD. Inadequate statistical 
power to detect clinically significant differences in adverse event rates in 
randomized clinical trials. J Clin Epidemiol. 2009;62:609–616; Bero LA, 
Barnes DB. Why review articles on the health effects of passive smoking 
reach different conclusions. JAMA. 1998;279(19):1566–70; Huss A, Egger 
M, Huwiler-Müntener K, Röösli M. Source of funding and results of 
studies of health effects of mobile phone use: systematic review of ex-
perimental studies. Environ Health Perspect. 2007;115:1–4.
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Internal Mammary Artery Ligation �
to Treat Angina Pectoris
People with coronary artery disease develop chest pain 
(angina pectoris) when they exercise because the nar-
rowed arteries cannot deliver enough blood to carry oxy-
gen and nutrients to the heart muscle and remove waste 
products fast enough. Relying on some anatomical studies 
and clinical reports during the 1930s, some surgeons sug-
gested that tying off (ligating) the mammary arteries 
would force blood into the arteries that supplied the heart 
and increase the amount of blood available to it. By com-
parison with major operations that require splitting the 
chest open, the procedure to ligate the internal mammary 
arteries is quite simple. The arteries are near the skin, and 
the entire procedure can be done under local anesthesia.

In 1958, J. Roderick Kitchell and colleagues* published 
the results of a study in which they ligated the internal 
mammary arteries of 50 people who had angina before 
the operation, then observed them for 2 to 6 months: 34 
of the patients (68%) improved clinically in that they had 
no more chest pain (36%) or fewer and less severe attacks 
(32%), 11 patients (22%) showed no improvement, and  
5 (10%) died. On its face, this operation seems an effective 
treatment for angina pectoris.

In fact, even before this study was published, the 
widely-read popular magazine Reader’s Digest carried an 
enthusiastic description of the procedure in an article 
entitled “New Surgery for Ailing Hearts.”† (This article 
probably did more to promote the operation than the 
technical medical publications.)

Yet, despite the observed symptomatic relief and popu-
lar appeal of the operation, no one uses it today. Why not?

In 1959, Leonard Cobb and colleagues‡ published the 
results of a double-blind randomized controlled trial of 
this operation. Neither the patients nor the physicians 
who evaluated them knew whether or not a given patient 
had the internal mammary arteries ligated. When the 
patient reached the operating room, the surgeon made the 
incisions necessary to reach the internal mammary arter-

ies and isolated them. At that time, the surgeon was 
handed an envelope instructing whether or not actually to 
ligate the arteries. The treated patients had their arteries 
ligated, and the control patients had the wound closed 
without touching the artery.

When evaluated in terms of subjective improvement as 
well as more quantitative measures, for example, how 
much they could exercise before developing chest pain or 
the appearance of their electrocardiogram, there was little 
difference between the two groups of people, although 
there was a suggestion that the control group did better.

In other words, the improvement that Kitchell and col-
leagues reported was a combination of observer biases 
and, probably more important, the placebo effect.

The Portacaval Shunt to Treat �
Cirrhosis of the Liver
Alcoholics often develop cirrhosis of the liver when the 
liver’s internal structure breaks down and increases the 
resistance to the flow of blood through the liver. As a 
result, blood pressure increases and often affects other 
parts of the circulation, such as the veins around the 
esophagus. If the pressure reaches a high enough level, 
these vessels can rupture, causing internal bleeding and 
even death. To relieve this pressure, many surgeons per-
formed a major operation to redirect blood flow away 
from the liver by constructing a connection between the 
portal artery (which goes to the liver) and the vena cava 
(the large veins on the other side of the liver). This con-
nection is called a portacaval shunt.

Like many medical procedures, the early studies that 
supported this operation were completed without con-
trols. The investigators completed the operation on peo-
ple, then watched to see how well they recovered. If their 
clinical condition improved, the operation was considered 
a success. This approach has the serious flaw of not allow-
ing for the fact that some of the people would have been 
fine (or died) regardless of whether or not they had the 
operation.

In 1966, more than 20 years after the operation was 
introduced, Norman Grace and colleagues§ examined 51 
papers that sought to evaluate this procedure. They 
examined the nature of the control group, if one was pres-
ent, whether or not patients were assigned to treatment or 

*Kitchell JR, Glover R, Kyle R. Bilateral internal mammary artery ligation 
for angina pectoris: preliminary clinical considerations. Am J Cardiol. 
1958;1:46–50.
†Ratcliff J. New surgery for ailing hearts. Reader’s Dig. 1957;71:70–73.
‡Cobb L, Thomas G, Dillard D, Merendino K, Bruce R. An evaluation of 
internal-mammary-artery ligation by a double-blind technic. N Engl J 
Med. 1959;260:1115–1118.

§Grace N, Muench H, Chalmers T. The present status of shunts for portal 
hypertension in cirrhosis. Gastroenterology. 1966;50:684–691.
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control at random, and how enthusiastic the authors 
were about the operation after they finished their study. 
Table 12-2 shows that the overwhelming majority of 
investigators who were enthusiastic about the procedure 
did studies that failed to include a control group or 
included a control group that was not the result of a ran-
dom assignment of patients between control and the 
operation. The few investigators who included controls 
and adequate randomization were not enthusiastic about 
the operation.

The reasons for biases on behalf of the operation in the 
studies that did not include controls — the placebo effect 
and observer biases — are the same as in the study of 
internal mammary artery ligation we just discussed.

The situation for the 15 studies with nonrandomized 
controls contains some of these same difficulties, but the 
situation is more subtle. Specifically, there is a control 
group that provides some basis of comparison; the mem-
bers of the control were not selected at random, however, 
but assigned on the basis of the investigators’ judgment. In 
such cases, there is often a bias to treat only patients who 
are well enough to respond (or occasionally, hopeless 
cases). This selection procedure biases the study in behalf 
of (or occasionally against) the treatment under study. 
This bias can slip into studies in quite subtle ways. For 
example, suppose that you are studying some treatment 
and decide to assign patients who are admitted to the con-
trol and treatment groups alternately in the order in which 
they are admitted or on alternate days of the month. It then 
makes it easy for the investigators to decide which group a 
given person will be a member of by manipulating the day 
or time of admission to the hospital. The investigators may 
not even realize they are introducing such a bias.

A similar problem can arise in laboratory experiments. 
For example, suppose that you are doing a study of a 
potential carcinogen with rats. Simply taking rats out of a 
cage and assigning the first 10 rats to the control group 
and the next 10 rats to the treatment group (or alternate 
rats to the two groups) will not produce a random sample 
because more aggressive, or bigger, or healthier rats may, 
as a group, stay in the front or back of the cage.

The only way to obtain a random sample that avoids 
these problems is consciously to assign the experimental 
subjects at random using a table of random numbers, dice, 
or other procedure.

Table 12-2 shows that the four randomized trials done 
of the portacaval shunt showed the operation to be of 

little or no value. This example illustrates a common pat-
tern: The better the study, the less likely it is to be biased in 
favor of the treatment.

The biases introduced by failure to randomize the 
treatments in clinical trials can be substantial. For 
example, Kenneth Schulz and coworkers* examined 250 
controlled trials and assessed how the subjects in the 
studies had been allocated to the different treatment 
groups. A well-randomized trial was one in which sub-
jects were assigned to treatments using a table of ran-
dom digits or a random number generator or some 
similar process. A study was deemed to have an inade-
quate treatment allocation procedure if the subjects 
were treated based on the date they entered the study 
(including alternating one treatment or the other), 
which could be subject to manipulation by the investi-
gators or others participating in the study. The authors 
found that the treatments appeared 41% better in the 
poorly randomized studies than in the ones with careful 
application of strict randomization procedures.

Thus, it is very important that the randomization be 
conducted using a random number generator, table of 
random digits, or other similarly objective procedure to 
avoid the introduction of serious upward biases in the 
estimate of how well the treatment under study works.

  �Table 12-2. Value of Portacaval Shunt 
According to 51 Different Studies

Degree of Enthusiasm

Design Marked Moderate None

No controls 24 7 1
Controls
  Not randomized
 R andomized

10
  0

3
1

2
3

Adapted from Table 2 of Grace ND, Muench H, Chambers TC. The 
present status of shunts for portal hypertension in cirrhosis.  
Gastroenterology. 1966;50:684–691. Copyright Elsevier 1966.

*Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of 
bias: dimensions of methodological quality associated with estimates of 
treatment effects in controlled trials. JAMA. 1995;273:408–412.
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Is Randomization of People Ethical?
Having concluded that the randomized clinical trial is the 
definitive way to assess the value of a potential therapy, we 
need to pause to discuss the ethical dilemma that some 
people feel when deciding whether or not to commit 
someone’s treatment to a random number. The short 
answer to this problem is that if no one knows which ther-
apy is better, there is no ethical imperative to use one 
therapy or another.

In reality, all therapies have their proponents and 
detractors, so one can rarely find a potential therapy that 
everyone feels neutral about at the start of a trial. (If there 
were no enthusiasts, no one would be interested in trying 
it.) As a result, it is not uncommon to hear physicians, 
nurses, and others protesting that some patient is being 
deprived of effective treatment (i.e., a therapy that the 
individual physician or nurse believes in) simply to answer 
a scientific question. Sometimes these objections are well 
founded, but when considering them it is important to 
ask: What evidence of being right does the proponent have? 
Remember that uncontrolled and nonrandomized studies 
tend to be biased in favor of the treatment. At the time, 
Cobb and colleagues’ randomized controlled trial of inter-
nal mammary artery ligation may have seemed unethical 
to enthusiasts for the surgery on the grounds that it 
required depriving some people of the potential benefits 
of the surgery. In hindsight, however, they spared the pub-
lic the pain and expense of a worthless therapy.

These genuine anxieties, as well as the possible vested 
interests of the proponent of the procedure, must be bal-
anced against the possible damage and costs of subjecting 
the patient to a useless or harmful therapy or procedure. 
The same holds for the randomized controlled trials of the 
portacaval shunt. To complete a randomized trial, it is 
necessary to assess carefully just why you believe some 
treatment to have an effect.

This situation is complicated by the fact that once 
something becomes accepted practice, it is almost impos-
sible to evaluate it, even though it is as much as a result of 
tradition and belief as scientific evidence, for example, the 
use of leeches. To return to the theme we opened this book 
with, a great deal of inconvenience, pain, and money is 
wasted pursuing diagnostic tests and therapies that are of 
no demonstrated value. For example, despite the fact that 
the provision of mammograms in younger women has 
become a major American industry, there is continuing 
debate over precisely who it helps.

Another seemingly more difficult issue is what to do 
when the study suggests that the therapy is or is not effec-
tive but enough cases have not yet been accumulated to 
reach conventional statistical significance, that is, P = .05. 
Recall (from Chapter 6) that the power of a test to detect a 
difference of a specified size increases with the sample size 
and as the risk of erroneously concluding that there is a 
difference between the treatment groups (the Type I error 
a) increases. Recall also that a is simply the largest value of 
P that one is willing to accept and still conclude that there 
is a difference between the sample groups (in this case, that 
the treatment had an effect). Thus, if people object to con-
tinuing a clinical trial until the trial accumulates enough 
patients (and sufficient power) to reject the hypothesis of 
no difference between the treatment groups with P < .05 
(or a = 5%), all they are really saying is that they are willing 
to conclude that there is a difference when P is greater than 
.05.* In other words, they are willing to accept a higher risk 
of being wrong in the assertion that the treatment was 
effective when, in fact, it is not, because they believe the 
potential benefits of the treatment make it worth pursuing 
despite the increased uncertainty about whether or not it 
is really effective. Viewed in this light, the often diffuse 
debates over continuing a clinical trial can be focused on 
the real question underlying the disagreements: How con-
fident does one need to be that the observed difference is 
not due to chance before concluding that the treatment 
really did cause the observed differences?

The answer to this question depends on personal judg-
ment and values, not statistical methodology.

Is a Randomized Controlled Trial �
Always Necessary?
No. There are some occasions, such as the introduction of 
penicillin, when the therapy produces such a dramatic 
improvement that one need not use statistical tools to 
estimate the probability that the observed effects are due 
to chance.

*When one examines the data as they accumulate in a clinical trial, one 
can encounter the same multiple-comparisons problem discussed in 
Chapters 3 and 4. Therefore, it is important to use specialized techniques 
called sequential testing that account for the fact that you are looking at 
the data more than once.
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In addition, sometimes medical realities make it 
impossible to do a randomized trial. For example, in 
Chapter 11 we considered a study of the effects of bone 
marrow transplants on survival among adults with leuke-
mia. One group of people received bone marrow trans-
plants from a tissue-matched sibling (allogenic transplants), 
and the other group received bone marrow removed 
from themselves before beginning treatment with che-
motherapy and radiation for the cancer (autologous 
transplants). Since everyone does not have a tissue-
matched sibling that could serve as a transplant donor, it 
was impossible to randomize the treatments. To mini-
mize bias in this study, however, the investigators treated 
all the people in the study the same and carefully 
matched people in the two treatment groups on other 
characteristics that could have affected the outcome. 
This situation often exists in clinical studies; it is par-
ticularly important to see that the subjects in different 
experimental groups are as similar as possible when a 
strict randomization is not possible.

There are also often accidents of nature that force 
attentive practitioners to reassess the value of accepted 
therapy. For example, Ambroise Paré, a French military 
surgeon, followed the accepted therapy of treating gun-
shot wounds with boiling oil. During a battle in Italy in 
1536, he ran out of oil and simply had to dress the 
untreated wounds. After spending a sleepless night wor-
rying about his patients who had been deprived of the 
accepted therapy, he was surprised to find them “free from 
vehemencie of paine to have had good rest” while the con-
ventionally treated soldiers were feverish and tormented 
with pain.* History does not record whether Paré then 
prepared a proposal to do a randomized clinical trial to 
study the value of boiling oil to treat gunshot wounds. 
Should and would it be necessary if he had made his 
discovery today?

  �DOES RANDOMIZATION ENSURE 
CORRECT CONCLUSIONS?

The randomized controlled trial is the most convincing 
way to demonstrate the value of a therapy. Can you 

assume that it will always lead to correct conclusions? 
No.

First, as Chapter 6 discussed, the trial may involve too 
few patients to have sufficient power to detect a true dif-
ference.

Second, if the investigators require P < .05 to conclude 
that the data are incompatible with the hypothesis that the 
treatment had no effect, in the long run 5% of the “statis-
tically significant” effects they find will be due to chance 
in the random-sampling process when, in actuality, the 
treatment had no effect, that is, the null hypothesis is cor-
rect. (Since investigators are more likely to publish posi-
tive findings than negative findings, more than 5% of the 
published results are probably due to chance rather than 
the treatments.) This means that as you do more and 
more tests, you will accumulate more and more incorrect 
statements. When one collects a set of data and repeatedly 
subdivides the data into smaller and smaller subgroups 
for comparison, it is not uncommon to “find” a difference 
that is due to random variation rather than a real treat-
ment effect.

Most clinical trials, especially those of chronic disease 
like coronary artery disease or diabetes, are designed to 
answer a single broad question dealing with the effect on 
survival of competing treatments. These trials involve 
considerable work and expense and yield a great many 
data, and the investigators are generally interested in 
gleaning as much information (and as many publications) 
as possible from their efforts. As a result, the sample is 
often divided into subgroups based on various potential 
prognostic variables, and the subgroups are compared for 
the outcome variable of interest (usually survival). This 
procedure inevitably yields one or more subgroups of 
patients in whom the therapy is effective.

To demonstrate the difficulties that can arise when one 
begins examining subgroups of patients in a randomized 
controlled trial, Kerry Lee and colleagues† took 1073 
patients who had coronary artery disease and were being 
treated with medical therapy at Duke University and ran-
domly divided them into two groups. The “treatment” was 
randomization. Therefore, if the samples are representa-
tive, one would not expect any systematic differences 

*This example is taken from Wulff HR. Rational Diagnosis and Treat-
ment. Oxford: Blackwell;1976. This excellent short book builds many 
bridges between the ideas we have been discussing and the diagnostic 
therapeutic thought processes.

†Lee K, McNeer F, Starmer F, Harris P, Rosati R. Clinical judgment and 
statistics: lessons from a simulated randomized trial in coronary artery 
disease. Circulation. 1980;61:508–515.
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between the two groups. Indeed, when they compared the 
two groups with respect to age, sex, medical history, elec-
trocardiographic findings, number of blocked coronary 
arteries, or whether or not the heart exhibited a normal 
contraction pattern, using the methods this book 
describes, they found no significant differences between 
the two groups, except in the left ventricular contraction 
pattern. This result is not surprising, given that the two 

groups were created by randomly dividing a single group 
into two samples. Most important, there was virtually no 
difference in the pattern of survival in the two groups (Fig. 
12-1A). So far, this situation is analogous to a randomized 
clinical trial designed to compare two groups receiving 
different therapies.

As already noted, after going to all the trouble of col-
lecting such data, investigators are usually interested in 

n = 539
n = 534

A

n = 194
n = 203

B

FIGURE 12-1. (A) Survival over time of 
1073 people with medically treated 
coronary artery disease who were 
randomly divided into two groups. As 
expected, there is no detectable 
difference. (B) Survival in two 
subgroups of the patients shown in 
panel A who have three-vessel disease 
and abnormal left ventricular function. 
The two different groups were selected 
at random and received the same 
medical treatment. The difference is 
statistically significant (P < .025) if one 
does not include a Bonferroni correction 
for the fact that many hypotheses were 
tested even though the only treatment 
was randomization into two groups. 
Survival curves appear smooth because 
of the large number of deaths in all 
cases. (Data for panel A from the text of 
Lee K, McNeer J, Starmer C, Harris P, 
Rosati R. Clinical judgment and 
statistics: lessons from a simulated 
randomized trial in coronary artery 
disease. Circulation. 1980;61:508–515, 
and personal communication with Dr. 
Lee. Panel B is reproduced from Fig. 1 
of the same paper with permission from 
American Heart Association, Inc.)
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examining various subgroups to see whether any finer 
distinctions can be made that will help the individual cli-
nician deal with each individual patient according to the 
particular circumstances to the case. To simulate this pro-
cedure, Lee and colleagues subdivided (the technical sta-
tistical term is stratified) the 1073 patients into six 
subgroups depending on whether one, two, or three coro-
nary arteries were blocked and whether or not the patient’s 
left ventricle was contracting normally. They also further 
subdivided these six groups into subgroups based on 
whether or not the patient had a history of heart failure. 
They analyzed the resulting survival data for the 18 sub-
groups (6 + 12) using the techniques discussed in Chapter 11. 
This analysis revealed, among others, a statistically sig-
nificant (P < .025) difference in survival between the two 
groups of patients who had three diseased vessels and an 
abnormal contraction pattern (Fig. 12-1B). How could 
this be? After all, randomization was the treatment.

This result is another aspect of the multiple-comparisons 
problem. Without counting the initial test of the global 
hypothesis that the survival in the two original sample 
groups is not different, Lee and colleagues completed 18 
different comparisons on the data. The chances of obtain-
ing a statistically significant result with P < .05, by chance 
is for these 18 comparisons is aT = 1 − (1 − .05)18 = .60. 

The result in Figure 12-1B is an example of this fact. When 
the total patient sample in a clinical trial is subdivided 
into many subgroups and the treatment compared within 
these subgroups, the results of these comparisons need to 
be interpreted very cautiously, especially when the P val-
ues are relatively large (say, around .05, as opposed to 
being around .001).*

This problem is not simply theoretical. Isabelle 
Boutron and colleagues† examined 72 randomized con-
trolled trials published in December 2006 that had a 
clearly identified primary outcome showing statistically 
nonsignificant results for that outcome. They found that 
about two-thirds of the papers had “spun” the results to 
highlight that the experimental treatments were beneficial 
in some way by focusing on subgroup comparisons or 

restricting the analysis to a subset of the population or 
other dubious interpretations of the data. 

This exercise illustrates an important general rule for 
all statistical analysis: design the experiment to minimize 
the total number of statistical tests of hypotheses that need to 
be computed.

  PROBLEMS WITH THE POPULATION

In most laboratory experiments and survey research, 
including marketing research and political polling, it is 
possible to define and locate the population of interest 
clearly and then arrange for an appropriate random sam-
ple. In contrast, in clinical research, the sample generally 
has to be drawn from patients and volunteers at medical 
centers who are willing to participate in the project. This 
fact can make the interpretation of the study in terms of 
the population as a whole quite difficult.

People who either attend clinics or are hospitalized at 
university medical centers are not really typical of the 
population as a whole or even the population of sick peo-
ple. Figure 12-2 shows that, of 1000 people in the United 
States, only eight are admitted to a hospital in any given 
month, and less than one is referred to an academic medi-
cal center. It is often that one person who is available to 
participate in a clinical research protocol. Sometimes the 
population of interest consists of people with the arcane 
or complex problems that lead to referral to an academic 
medical center; in such cases, a sample consisting of such 
people can be considered to represent the relevant popu-
lation. However, as Figure 12-2 makes clear, a sample of 
people drawn (even at random) from the patients at a uni-
versity medical center can hardly be considered to be rep-
resentative of the population as a whole. This fact must be 
carefully considered when evaluating a research report to 
decide just what population (i.e., whom) the results can be 
generalized to.

In addition to the fact that people treated at academic 
medical centers do not really represent the true spectrum 
of illness in the community, there is an additional diffi-
culty due to the fact that hospitalized patients do not rep-
resent a random sample of the population as a whole. It  
is not uncommon for investigators to complete studies  
of the association between different diseases based on 
hospitalized patients (or patients who seek medical help 
as outpatients). In general, different diseases lead to differ-
ent rates of hospitalization (or physician consultation). 
Unless extreme care is taken in analyzing the results of 

*One approach to dealing with this problem would be to treat the sec-
ondary tests (along with the main hypothesis) as a family of comparisons 
and use the Holm-Sidak procedure to determine if it was appropriate 
to conclude that any observed differences were statistically significant.
†Boutron I, Dutton S, Ravaud P, Altman DG. Reporting and interpreta-
tion of randomized controlled trials with statistically nonsignificant  
results for primary outcomes. JAMA. 2010;303:2058–2064.
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such studies to ensure that there are comparable rates of 
all classes of disease, any apparent association (or lack of 
association) between various diseases and symptoms is as 
likely to be due to the differential rates at which patients 
seek help (or die, if it is an autopsy study) as to a true 
association between the diseases. This problem is called 
Berkson’s fallacy, after the statistician who first identified 
the problem.

  HOW YOU CAN IMPROVE THINGS

Using statistical thinking to reach conclusions in clinical 
practice and the biomedical sciences amounts to much 
more than memorizing a few formulas and looking up P 
values in tables. Like all human endeavors, applying statis-
tical procedures and interpreting the results requires 
insight — not only into the statistical techniques but also 
into the clinical or scientific question to be answered. As 
discussed in Chapter 1, these methods will continue to 
increase in importance as economic pressures grow for 
evidence that diagnostic procedures and therapies actually 
are worth the cost both to the individual patient and to 
society at large. Statistical arguments play a central role in 
many of these discussions.

Even so, the statistical aspects of most medical research 
are supervised by investigators who only have heard of t 
tests (and, perhaps, contingency tables) regardless of the 
nature of the experimental design and the data. Since the 
investigators themselves best know what they are trying to 
establish and are responsible for drawing the conclusions, 
they should take the lead in the analysis of the data. 

Unfortunately, this task often falls to a laboratory techni-
cian or statistical consultant who does not really under-
stand the question at hand or the data collected.

This problem is aggravated by the fact that investiga-
tors often go into the clinic or laboratory and collect data 
before clearly thinking out the specific question they 
wish to answer. As a result, after the data are collected 
and the investigators begin searching for a P value (often 
under the pressure of the deadline for submitting an 
abstract to a scientific meeting), they run into the fact 
that P values are associated with statistical hypothesis 
tests and that in order to test a hypothesis, you need a 
hypothesis to test.

As discussed earlier in this chapter, the hypothesis (as 
embodied in the type of experiment or observational 
study) combined with the scale of measurement deter-
mines the statistical method to be used. Armed with a 
clearly stated hypothesis, it is relatively straightforward to 
design an observational study or experiment and deter-
mine the method of statistical analysis to be applied before 
one starts collecting the data. The simplest procedure is to 
make up the table that will contain the data before collect-
ing it, assume that you have the numbers, and then deter-
mine the method of analysis. This exercise will ensure that 
after going to the trouble and expense of actually collect-
ing the data, it will be possible to analyze it.

While this procedure may seem obvious, very few 
people follow it. As a result, problems often arise when 
the time comes to compute the prized P value, because 
the study design does not fit the hypothesis — which is 
finally verbalized when a feisty statistician demands 

FIGURE 12-2. Estimates of the number of 
people in the United States who report 
illnesses and receive various forms of 
health care. Less than 1 in 1000 is 
hospitalized in an academic medical 
center. (Redrawn with permission from 
Fig. 2 of Green LA, Fryer GE Jr, Yawn BP, 
Lanier D, Dovey SM., The ecology of 
medical care revisited. N Engl J Med. 
2001;344:2021–2025.)
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it — or the design does not fit into the paradigm associ-
ated with one of the established statistical hypothesis 
tests. (This problem is especially acute when dealing with 
more complex study designs.) Faced with a desperate 
investigator and the desire to be helpful, the statistical 
consultant will often try to salvage things by proposing an 
analysis of a subset of the data, suggesting the use of less 
powerful methods, or suggesting that the investigator use 
his or her data to test a different hypothesis (i.e., ask a 
different question). While these steps may serve the 
short-term goal of getting an abstract or manuscript out 
on time, they do not encourage efficient clinical and sci-
entific investigation. These frustrating problems could be 
easily avoided if investigators simply thought about how 
they were going to analyze their data at the beginning rather 
than the end of the process. Unfortunately, most do not.

When evaluating the strength of an argument for or 
against some treatment or scientific hypothesis, what 
should you look for? The investigator should clearly state*

•	 The hypothesis being examined (preferably, as the specific 
null hypothesis to be analyzed statistically).

•	 The data used to test this hypothesis and the procedure 
used to collect them (including the randomization proce-
dure).

•	 The population the samples represent.
•	 The statistical procedure used to evaluate the data and 

reach conclusions.
•	 The power of the study to detect a specified effect, particu-

larly if the conclusion is “negative.”

The closer a paper or oral presentation comes to meet-
ing this standard, the more aware the authors are of the 
statistical issues in what they are doing and the more con-
fident you can be of their conclusions.

One should immediately be suspicious of a paper that 
says nothing about the procedures used to obtain “P val-
ues” or that includes meaningless statements such as 
“standard statistical procedures were used.”

Likewise — particularly for studies funded by an organi-
zation with a strong financial interest in the outcome — such 

as a pharmaceutical or tobacco company — take care to 
ensure that the conclusions stated in the paper are, in fact, 
consistent with the results in the paper and that they are not 
being “spun” to support the sponsor’s interests.†

Finally, the issues of ethics and scientific validity, espe-
cially as they concern human and animal subjects, are 
inextricably intertwined. Any experimentation that pro-
duces results that are misleading or incorrect as a result of 
avoidable methodologic errors — statistical or other-
wise — is unethical. It needlessly puts subjects in jeopardy 
by not taking every precaution to protect them against 
unnecessary risk of injury, discomfort, and, in the case of 
humans, inconvenience. In addition, significant amounts 
of time and money can be wasted trying to reproduce or 
refute erroneous results. Alternatively, these results might 
be accepted without further analysis and adversely affect 
not only the work of the scientific community, but also 
the treatment of patients in the future.

Of course, a well-designed, properly analyzed study 
does not automatically make an investigator’s research 
innovative, profound, or even worth placing subjects at 
risk as part of the data collection process. However, even 
for important questions, it is clearly not ethical to place 
subjects at risk to collect data in a poorly designed study 
when this situation can be avoided easily by a little techni-
cal knowledge (such as that included in this book) and 
more thoughtful planning.

How can you help improve the situation?
Do not let people get away with sloppy statistical think-

ing or biased study design any more than you would per-
mit them to get away with sloppy clinical or scientific 
thinking. Write letters to the editor. Ask questions in class, 
rounds, and meetings. When someone answers that they 
do not know how or where P came from, ask them how 
they can be certain that their results mean what they say. 
The answer may well be that they cannot.

Most important, if you decide to contribute to the fund 
of scientific and clinical knowledge, take the time and care 
to do it right.

*Many journals have moved to formalize the reporting of results from 
randomized controlled trials. For a widely accepted standard, see Altman 
DG, Schulz KF, Moher D, Egger M, Davidoff F, Elbourne D, Gøtzsche PC, 
Lang T, CONSORT Group (Consolidated Standards of Reporting Trials). 
The revised CONSORT statement for reporting randomized trials: expla-
nation and elaboration. Ann Int Med. 2001;134:663–694.

†In addition to the discussion of spinning results earlier in this chapter, 
Probs. 5-5 and 5-6 provided examples of spinning. See also Tong EK, 
Glantz SA. Constructing “sound science” and “good epidemiology”: 
tobacco, lawyers, and public relations firms. Am J Public Health. 2001;91:
1749–1757.
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Computational Forms

  �TO INTERPOLATE BETWEEN TWO 
VALUES IN A STATISTICAL TABLE

If the value you need is not in the statistical table, it is pos-
sible to estimate the value by linear interpolation. For 
example, suppose you want the critical value of a test sta-
tistic, C, corresponding to n degrees of freedom, and this 
value of degrees of freedom is not in the table. Find the val-
ues of degrees of freedom that are in the table that bracket v, 
denoted a and b. Determine the fraction of the way between 
a and b that v lies, f = (n − a)/(b − a). Therefore, the desired 
critical value is C = Ca + f (Cb − Ca), where Ca and Cb are 
the critical values that correspond to a and b degrees of 
freedom.

A similar approach can be used to interpolate between 
two P values at a given degrees of freedom. For example, 
suppose you want to estimate the P value that corresponds 
to t = 2.620 with 20 degrees of freedom. From Table 4-1 
with 20 degrees of freedom t.01 = 2.845 and t.02 = 2.528, f = 
(2.620 − 2.845)/(2.528 − 2.845) = 0.7098, and P = .01 + 
.07098 × (.02 − .01) = .0171.

  �VARIANCE

s
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1
= ∑ − ∑

−
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  �ONE-WAY ANALYSIS OF VARIANCE

These formulas can be used for equal or unequal sample 
sizes.

Given Sample Means and Standard Deviations
For treatment group t : nt = size of sample, Xt = mean, st = 
standard deviation. There are a total of k treatment groups.
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Given Raw Data
Subscript t refers to treatment group; subscript s refers to 
experimental subject.
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Degrees of freedom and F are computed as above.
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  �UNPAIRED t TEST

Given Sample Means and Standard Deviations
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in the equation for t above.

  �2 3 2 CONTINGENCY TABLES 
(INCLUDING YATES CORRECTION �
FOR CONTINUITY)

The contingency table is

A B
C D

Chi Square

χ 2
22

=
− −

+ + + +
N AD BC N

A B C D A C B D

( / )

( )( )( )( )

� �

where N = A + B + C + D.

McNemar’s Test

χ 2
21

=
− −

+
( )� �B C

B C

where B and C are the numbers of people who responded 
to only one of the treatments.

Fisher Exact Test
Interchange the rows and columns of the contingency 
table so that the smallest observed frequency is in position 
A. Compute the probabilities associated with the resulting 
table, and all more-extreme tables obtained by reducing A 
by 1 and recomputing the table to maintain the row and 
column totals until A = 0. Add all these probabilities to get 
the first tail of the test. If either the two-row sums or two-
column sums are equal, double the resulting probability 
to obtain the two-tail P value. Otherwise, to obtain the 
second tail of the test, identify the smallest of elements B 
or C. Suppose that it is B. Reduce B by 1 and compute the 
probability of the associated table. Repeat this process 
until B has been reduced to 0. Identify those tables with 
probabilities equal to or less than the probability associ-
ated with the original observations. Add these probabili-
ties to the first-tail probabilities to obtain the two-tail 
value of P. All the tables computed by varying B may not 
have probabilities below that of the original table; those 
that do not do not contribute to P.

Table A-1 lists values of n! for use in computing the 
Fisher exact test. For larger values of n, use a computer or 
logarithms as P = antilog [(log 9! + log 14! + log 11! + log 
12!) − log 23! − (log 1! + log 14! + log 11! + log 12!)], using 
tables of log factorials available in handbooks of mathe-
matical tables.

  �LINEAR REGRESSION AND 
CORRELATION
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  �REPEATED MEASURES 
ANALYSIS OF VARIANCE

There are k treatments and n experimental subjects.
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  �KRUSKAL-WALLIS TEST
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where N = ∑nt .

  �FRIEDMAN TEST

x
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2 212

1
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+
− +∑
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where there are k treatments and n experimental subjects 
and Rt is the sum of ranks for treatment t.

  TABLE A-1. Values of n! for n = 1 to n = 20

n 	 n!

0 1
1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

12 479001600

13 6227020800

14 87178291200

15 1307674368000

16 20922789888000

17 355687428096000

18 6402373705728000

19 121645100408832000

20 2432902008176640000
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Statistical Tables
Table 3-1. Critical Values of F Corresponding to P < .05 and P < .01
Table 4-1. Critical Values of t (Two-Tailed)
Table 4-4. Holm-Sidak Critical P Values for Individual Comparisons to Maintain a 5% Family Error Rate (αT = .05)
Table 5-5. Critical Values for the χ2 Distribution
Table 6-2. Critical Values of t (One-Tailed)
Table 8-7. Critical Values for Spearman Rank Correlation Coefficient
Table 10-3. Critical Values (Two-Tailed) of the Mann-Whitney Rank-Sum T
Table 10-7. Critical Values (Two-Tailed) of Wilcoxon W
Table 10-14. Critical Values for Friedman χr

2

Power Charts for Analysis of Variance
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  TABLE 3-1. Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface)

nd

nn

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 ∞

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208 6234 6261 6286 6302 6323 6334 6352 6361 6366

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 19.49 19.49 19.50 19.50
98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42 99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.57 8.56 8.54 8.54 8.53
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80 5.77 5.74 5.71 5.70 5.68 5.66 5.65 5.64 5.63
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.40 4.38 4.37 4.36
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05 9.96 9.89 9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.07 9.04 9.02

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.94 6.90 6.88

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.28 3.25 3.24 3.23
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15 6.07 5.98 5.90 5.85 5.78 5.75 5.70 5.67 5.65

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.94 2.93
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36 5.28 5.20 5.11 5.06 5.00 4.96 4.91 4.88 4.86

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93 2.90 2.86 2.82 2.80 2.77 2.76 2.73 2.72 2.71
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80 4.73 4.64 4.56 4.51 4.45 4.41 4.36 4.33 4.31

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77 2.74 2.70 2.67 2.64 2.61 2.59 2.56 2.55 2.54
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65 2.61 2.57 2.53 2.50 2.47 2.45 2.42 2.41 2.40
9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10 4.02 3.94 3.86 3.80 3.74 3.70 3.66 3.62 3.60

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54 2.50 2.46 2.42 2.40 2.36 2.35 2.32 2.31 2.30
9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86 3.78 3.70 3.61 3.56 3.49 3.46 3.41 3.38 3.36

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46 2.42 2.38 7.34 2.32 2.28 2.26 2.24 2.22 2.21
9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67 3.59 3.51 3.42 3.37 3.30 3.27 3.21 3.18 3.16

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13
8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51 3.43 3.34 3.26 3.21 3.14 3.11 3.06 3.02 3.00

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28 2.24 2.20 2.16 2.13 2.09 2.07 2.04 2.02 2.01
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.98 2.86 2.80 2.77 2.75

17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23 2.19 2.15 2.11 2.08 2.04 2.02 1.99 1.97 1.96
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16 3.08 3.00 2.92 2.86 2.79 2.76 2.70 2.67 2.65

18 4.41 3.55 3.16 2.93 2.77 3.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19 2.15 2.11 2.07 2.04 2.00 1.98 1.95 1.93 1.92
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07 3.00 2.91 2.83 2.78 2.71 2.68 2.62 2.59 2.57

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15 2.11 2.07 2.02 2.00 1.96 1.94 1.91 1.90 1.88
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00 2.92 2.84 2.76 2.70 2.63 2.60 2.54 2.51 2.49

nn = degrees of freedom for numerator; nd = degrees of freedom for denominator.

(continued)
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  TABLE 3-1. Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface) (Continued)

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12 2.08 2.04 1.99 1.96 1.92 1.90 1.87 1.85 1.84
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.87 1.84 1.82 1.81
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07 2.03 1.98 1.93 1.91 1.87 1.84 1.81 1.80 1.78
7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.37 2.33 2.31

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02 1.98 1.94 1.89 1.86 1.82 1.80 1.76 1.74 1.73
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.33 2.27 2.23 2.31

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00 1.96 1.92 1.87 1.84 1.80 1.77 1.74 1.72 1.71
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99 1.95 1.90 1.85 1.82 1.78 1.76 1.72 1.70 1.69
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66 2.58 2.50 2.41 2.36 2.28 2.25 2.19 2.15 2.13

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97 1.93 1.88 1.84 1.80 1.76 1.74 1.71 1.68 1.67
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63 2.55 2.47 2.38 2.33 2.25 2.21 2.16 2.12 2.10

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96 1.91 1.87 1.81 1.78 1.75 1.72 1.69 1.67 1.65
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60 2.52 2.44 2.35 2.30 2.22 2.18 2.13 2.09 2.06

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94 1.90 1.85 1.80 1.77 1.73 1.71 1.68 1.65 1.64
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57 2.49 2.41 2.32 2.27 2.19 2.15 2.10 2.06 2.03

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93 1.89 1.84 1.79 1.76 1.72 1.69 1.66 1.64 1.62
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55 2.47 2.38 2.29 2.24 2.16 2.13 2.07 2.03 2.01

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91 1.86 1.82 1.76 1.74 1.69 1.67 1.64 1.61 1.59
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51 2.42 2.34 2.25 2.20 2.12 2.08 2.02 1.98 1.96

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89 1.84 1.80 1.74 1.71 1.67 1.64 1.61 1.59 1.57
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47 2.38 2.30 2.21 2.15 2.08 2.04 1.98 1.94 1.91

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87 1.82 1.78 1.72 1.69 1.65 1.62 1.59 1.56 1.55
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43 2.35 2.26 2.17 2.12 2.04 2.00 1.94 1.90 1.87

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85 1.80 1.76 1.71 1.67 1.63 1.60 1.57 1.54 1.53
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40 2.32 2.22 2.14 2.08 2.00 1.97 1.90 1.86 1.84

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84 1.79 1.74 1.69 1.66 1.61 1.59 1.55 1.53 1.51
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37 2.29 2.20 2.11 2.05 1.97 1.94 1.88 1.84 1.81

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82 1.78 1.73 1.68 1.64 1.60 1.57 1.54 1.51 1.49
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35 2.26 2.17 2.08 2.02 1.94 1.91 1.85 1.80 1.78

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81 1.76 1.72 1.66 1.63 1.58 1.56 1.52 1.50 1.48
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32 2.24 2.15 2.06 2.00 1.92 1.88 1.82 1.78 1.75

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80 1.75 1.71 1.65 1.62 1.57 1.54 1.51 1.48 1.46
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30 2.22 2.13 2.04 1.98 1.90 1.86 1.80 1.76 1.72

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79 1.74 1.70 1.64 1.61 l.56 1.53 1.50 1.47 1.45

7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28 2.20 2.11 2.02 1.96 1.88 1.84 1.78 1.73 1.70



50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78 1.74 1.69 1.63 1.60 1.55 1.52 1.48 1.46 1.44
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26 2.18 2.10 2.00 1.94 1.86 1.82 1.76 1.71 1.68

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75 1.70 1.65 1.59 1.56 1.50 1.48 1.44 1.41 1.39
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20 2.12 2.03 1.93 1.87 1.79 1.74 1.68 1.63 1.60

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72 1.67 1.62 1.56 1.53 1.47 1.45 1.40 1.37 1.35
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15 2.07 1.98 1.88 1.82 1.74 1.69 1.62 1.56 1.53

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70 1.65 1.60 1.54 1.51 1.45 1.42 1.38 1.35 1.32
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11 2.03 1.94 1.84 1.78 1.70 1.65 1.57 1.52 1.49

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68 1.63 1.57 1.51 1.48 1.42 1.39 1.34 1.30 1.28
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06 1.98 1.89 1.79 1.73 1.64 1.59 1.51 1.46 1.43

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.87 1.84 1.78 1.73 1.66 1.61 1.56 1.50 1.46 1.39 1.37 1.32 1.28 1.25
6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 2.23 2.15 2.03 1.95 1.86 1.76 1.70 1.61 1.56 1.48 1.42 1.38

∞ 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57 1.52 1.46 1.40 1.35 1.28 1.24 1.17 1.11 1.00
6.63 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87 1.79 1.69 1.59 1.52 1.41 1.36 1.25 1.15 1.00

nn = degrees of freedom for numerator; nd = degrees of freedom for denominator.
Reproduced from Snedecor GW, Cochran WG. Statistical Methods, 8th ed. Copyright © 1989. Reproduced with the permission of John Wiley & Sons, Inc.
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  TABLE 4-1. Critical Values of t (Two-Tailed)

–t +t0

Probability of Greater Value (P)

n 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001

1 1.000 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619
2 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599
3 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924
4 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 1.415 1.895 2.365 2.998 3.449 4.029 4.785 5.408
8 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768
24 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
31 0.682 1.309 1.696 2.040 2.453 2.744 3.022 3.375 3.633
32 0.682 1.309 1.694 2.037 2.449 2.738 3.015 3.365 3.622
33 0.682 1.308 1.692 2.035 2.445 2.733 3.008 3.356 3.611
34 0.682 1.307 1.691 2.032 2.441 2.728 3.002 3.348 3.601
35 0.682 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591
36 0.681 1.306 1.688 2.028 2.434 2.719 2.990 3.333 3.582
37 0.681 1.305 1.687 2.026 2.431 2.715 2.985 3.326 3.574
38 0.681 1.304 1.686 2.024 2.429 2.712 2.980 3.319 3.566
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� TABLE 4-1. Critical Values of t (Two-Tailed) (Continued)

Probability of Greater Value (P)

ν 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001

39 0.681 1.304 1.685 2.023 2.426 2.708 2.976 3.313 3.558
40 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
42 0.680 1.302 1.682 2.018 2.418 2.698 2.963 3.296 3.538
44 0.680 1.301 1.680 2.015 2.414 2.692 2.956 3.286 3.526
46 0.680 1.300 1.679 2.013 2.410 2.687 2.949 3.277 3.515
48 0.680 1.299 1.677 2.011 2.407 2.682 2.943 3.269 3.505
50 0.679 1.299 1.676 2.009 2.403 2.678 2.937 2.261 3.496
52 0.679 1.298 1.675 2.007 2.400 2.674 2.932 3.255 3.488
54 0.679 1.297 1.674 2.005 2.397 2.670 2.927 3.248 3.480
56 0.679 1.297 1.673 2.003 2.395 2.667 2.923 3.242 3.473
58 0.679 1.296 1.672 2.002 2.392 2.663 2.918 3.237 3.466
60 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
62 0.678 1.295 1.670 1.999 2.388 2.657 2.911 3.227 3.454
64 0.678 1.295 1.669 1.998 2.386 2.655 2.908 3.223 3.449
66 0.678 1.295 1.668 1.997 2.384 2.652 2.904 3.218 3.444
68 0.678 1.294 1.668 1.995 2.382 2.650 2.902 3.214 3.439
70 0.678 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435
72 0.678 1.293 1.666 1.993 2.379 2.646 2.896 3.207 3.431
74 0.678 1.293 1.666 1.993 2.378 2.644 2.894 3.204 3.427
76 0.678 1.293 1.665 1.992 2.376 2.642 2.891 3.201 3.423
78 0.678 1.292 1.665 1.991 2.375 2.640 2.889 3.198 3.420
80 0.678 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
90 0.677 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402

100 0.677 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
140 0.676 1.288 1.656 1.977 2.353 2.611 2.852 3.149 3.361
160 0.676 1.287 1.654 1.975 2.350 2.607 2.846 3.142 3.352
180 0.676 1.286 1.653 1.973 2.347 2.603 2.842 3.136 3.345
200 0.676 1.286 1.653 1.972 2.345 2.601 2.839 3.131 3.340

∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905

Normal 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905

Adapted from Zar JH. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984, 484–485:table B.3, by permission of Pearson 
Education, Inc., Upper Saddle River, NJ.



  TABLE 4-4. Holm-Sidak Critical P Values for Individual Comparisons to Maintain a 5% Family Error Rate (a T = .05)

Comparison 
Number ( j)

Total Number of Comparisons (k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  1 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039 .0037 .0034

  2 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039 .0037

  3 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039

  4 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043

  5 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047

  6 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051

  7 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057

  8 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064

  9 .0500 .0253 .0170 .0127 .0102 .0085 .0073

10 .0500 .0253 .0170 .0127 .0102 .0085

11 .0500 .0253 .0170 .0127 .0102

12 .0500 .0253 .0170 .0127

13 .0500 .0253 .0170

14 .0500 .0253

15 .0500

Pcrit = 1 – (1 − aT)
1/(k−j+1).
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� TABLE 5-5. Critical Values for the χ2
 Distribution

Probability of Greater Value P

ν .50 .25 .10 .05 .025 .01 .005 .001

1 .455 1.323 2.706 3.841 5.024 6.635 7.879 10.828
2 1.386 2.773 4.605 5.991 7.378 9.210 10.597 13.816
3 2.366 4.108 6.251 7.815 9.348 11.345 12.838 16.266
4 3.357 5.385 7.779 9.488 11.143 13.277 14.860 18.467
5 4.351 6.626 9.236 11.070 12.833 15.086 16.750 20.515
6 5.348 7.841 10.645 12.592 14.449 16.812 18.548 22.458
7 6.346 9.037 12.017 14.067 16.013 18.475 20.278 24.322
8 7.344 10.219 13.362 15.507 17.535 20.090 21.955 26.124
9 8.343 11.389 14.684 16.919 19.023 21.666 23.589 27.877

10 9.342 12.549 15.987 18.307 20.483 23.209 25.188 29.588
11 10.341 13.701 17.275 19.675 21.920 24.725 26.757 31.264
12 11.340 14.845 18.549 21.026 23.337 26.217 28.300 32.909
13 12.340 15.984 19.812 22.362 24.736 27.688 29.819 34.528
14 13.339 17.117 21.064 23.685 26.119 29.141 31.319 36.123
15 14.339 18.245 22.307 24.996 27.488 30.578 32.801 37.697
16 15.338 19.369 23.542 26.296 28.845 32.000 34.267 39.252
17 16.338 20.489 24.769 27.587 30.191 33.409 35.718 40.790
18 17.338 21.605 25.989 28.869 31.526 34.805 37.156 42.312
19 18.338 22.718 27.204 30.144 32.852 36.191 38.582 43.820
20 19.337 23.828 28.412 31.410 34.170 37.566 39.997 45.315
21 20.337 24.935 29.615 32.671 35.479 38.932 41.401 46.797
22 21.337 26.039 30.813 33.924 36.781 40.289 42.796 48.268
23 22.337 27.141 32.007 35.172 38.076 41.638 44.181 49.728
24 23.337 28.241 33.196 36.415 39.364 42.980 45.559 51.179
25 24.337 29.339 34.382 37.652 40.646 44.314 46.928 52.620
26 25.336 30.435 35.563 38.885 41.923 45.642 48.290 54.052
27 26.336 31.528 36.741 40.113 43.195 46.963 49.645 55.476
28 27.336 32.020 37.916 41.337 44.461 48.278 50.993 56.892
29 28.336 33.711 39.087 42.557 45.722 49.588 52.336 58.301
30 29.336 34.800 40.256 43.773 46.979 50.892 53.672 59.703
31 30.336 35.887 41.422 44.985 48.232 52.191 55.003 61.098
32 31.336 36.973 42.585 46.194 49.480 53.486 56.328 62.487
33 32.336 38.058 43.745 47.400 50.725 54.776 57.648 63.870
34 33.336 39.141 44.903 48.602 51.966 56.061 58.964 65.247
35 34.336 40.223 46.059 49.802 53.203 57.342 60.275 66.619
36 35.336 41.304 47.212 50.998 54.437 58.619 61.581 67.985
37 36.336 42.383 48.363 52.192 55.668 59.893 62.883 69.346
38 37.335 43.462 49.513 53.384 56.896 61.162 64.181 70.703
39 38.335 44.539 50.660 54.572 58.120 62.428 65.476 72.055
40 39.335 45.616 51.805 55.758 59.342 63.691 66.766 73.402
41 40.335 46.692 52.949 56.942 60.561 64.950 68.053 74.745
42 41.335 47.766 54.090 58.124 61.777 66.206 69.336 76.084
43 42.335 48.840 55.230 59.304 62.990 67.459 70.616 77.419
44 43.335 49.913 56.369 60.481 64.201 68.710 71.893 78.750
45 44.335 50.985 57.505 61.656 65.410 69.957 73.166 80.077
46 45.335 52.056 58.641 62.830 66.617 71.201 74.437 81.400
47 46.335 53.127 59.774 64.001 67.821 72.443 75.704 82.720
48 47.335 54.196 60.907 65.171 69.023 73.683 76.969 84.037
49 48.335 55.265 62.038 66.339 70.222 74.919 78.231 85.351
50 49.335 56.334 63.167 67.505 71.420 76.154 79.490 86.661

Adapted from Zar JH. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984, 479–482:table B.1, by permission of Pearson 
Education, Inc., Upper Saddle River, NJ.
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  TABLE 6-2. Critical Values of t (One-Tailed)

t 0

Probability of Larger Value (Upper Tail)

.995 .99 .98 .975 .95 .90 .85 .80 .70 .60

Probability of Smaller Value (Lower Tail)

n .005 .01 .02 .025 .05 .10 .15 .20 .30 .40

2 −9.925 −6.965 −4.849 −4.303 −2.920 −1.886 −1.386 −1.061 −0.617 −0.289
4 −4.604 −3.747 −2.999 −2.776 −2.132 −1.533 −1.190 −0.941 −0.569 −0.271
6 −3.707 −3.143 −2.612 −2.447 −1.943 −1.440 −1.134 −0.906 −0.553 −0.265
8 −3.355 −2.896 −2.449 −2.306 −1.860 −1.397 −1.108 −0.889 −0.546 −0.262

10 −3.169 −2.764 −2.359 −2.228 −1.812 −1.372 −1.093 −0.879 −0.542 −0.260
12 −3.055 −2.681 −2.303 −2.179 −1.782 −1.356 −1.083 −0.873 −0.539 −0.259
14 −2.977 −2.624 −2.264 −2.145 −1.761 −1.345 −1.076 −0.868 −0.537 −0.258
16 −2.921 −2.583 −2.235 −2.120 −1.746 −1.337 −1.071 −0.865 −0.535 −0.258
18 −2.878 −2.552 −2.214 −2.101 −1.734 −1.330 −1.067 −0.862 −0.534 −0.257
20 −2.845 −2.528 −2.197 −2.086 −1.725 −1.325 −1.064 −0.860 −0.533 −0.257
25 −2.787 −2.485 −2.167 −2.060 −1.708 −1.316 −1.058 −0.856 −0.531 −0.256
30 −2.750 −2.457 −2.147 −2.042 −1.697 −1.310 −1.055 −0.854 −0.530 −0.256
35 −2.724 −2.438 −2.133 −2.030 −1.690 −1.306 −1.052 −0.852 −0.529 −0.255
40 −2.704 −2.423 −2.123 −2.021 −1.684 −1.303 −1.050 −0.851 −0.529 −0.255
60 −2.660 −2.390 −2.099 −2.000 −1.671 −1.296 −1.045 −0.848 −0.527 −0.254

120 −2.617 −2.358 −2.076 −1.980 −1.658 −1.289 −1.041 −0.845 −0.526 −0.254
∞ −2.576 −2.326 −2.054 −1.960 −1.645 −1.282 −1.036 −0.842 −0.524 −0.253

Normal −2.576 −2.326 −2.054 −1.960 −1.645 −1.282 −1.036 −0.842 −0.524 −0.253
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  TABLE 6-2. Critical Values of t (One-Tailed) (Continued)

Probability of Larger Value (Upper Tail)

.50 .40 .30 .20 .15 .10 .05 .025 .02 .01 .005

Probability of Smaller Value (Lower Tail)

.50 .60 .70 .80 .85 .90 .95 .975 .98 .99 .995

0 0.289 0.617 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925
0 0.271 0.569 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604
0 0.265 0.553 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707
0 0.262 0.546 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355
0 0.260 0.542 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169
0 0.259 0.539 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055
0 0.258 0.537 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977
0 0.258 0.535 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921
0 0.257 0.534 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878
0 0.257 0.533 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845
0 0.256 0.531 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787
0 0.256 0.530 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750
0 0.255 0.529 0.852 1.052 1.306 1.690 2.030 2.133 2.438 2.724
0 0.255 0.529 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704
0 0.254 0.527 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660
0 0.254 0.526 0.845 1.041 1.289 1.658 1.980 2.076 2.358 2.617
0 0.253 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576
0 0.253 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576
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  �TABLE 8-7. Critical Values for Spearman Rank Correlation Coefficient*

Probability of Greater Value (P)

n .50 .20 .10 .05 .02 .01 .005 .002 .001

4 .600 1.000 1.000
5 .500 .800 .900 1.000 1.000
6 .371 .657 .829 .886 .943 1.000 1.000
7 .321 .571 .714 .786 .893 .929 .964 1.000 1.000
8 .310 .524 .643 .738 .833 .881 .905 .952 .976
9 .267 .483 .600 .700 .783 .833 .867 .917 .933

10 .248 .455 .564 .648 .745 .794 .830 .879 .903
11 .236 .427 .536 .618 .709 .755 .800 .845 .873
12 .217 .406 .503 .587 .678 .727 .769 .818 .846
13 .209 .385 .484 .560 .648 .703 .747 .791 .824
14 .200 .367 .464 .538 .626 .679 .723 .771 .802
15 .189 .354 .446 .521 .604 .654 .700 .750 .779
16 .182 .341 .429 .503 .582 .635 .679 .729 .762
17 .176 .328 .414 .485 .566 .615 .662 .713 .748
18 .170 .317 .401 .472 .550 .600 .643 .695 .728
19 .165 .309 .391 .460 .535 .584 .628 .677 .712
20 .161 .299 .380 .447 .520 .570 .612 .662 .696
21 .156 .292 .370 .435 .508 .556 .599 .648 .681
22 .152 .284 .361 .425 .496 .544 .586 .634 .667
23 .148 .278 .353 .415 .486 .532 .573 .622 .654
24 .144 .271 .344 .406 .476 .521 .562 .610 .642
25 .142 .265 .337 .398 .466 .511 .551 .598 .630
26 .138 .259 .331 .390 .457 .501 .541 .587 .619
27 .136 .255 .324 .382 .448 .491 .531 .577 .608
28 .133 .250 .317 .375 .440 .483 .522 .567 .598
29 .130 .245 .312 .368 .433 .475 .513 .558 .589
30 .128 .240 .306 .362 .425 .467 .504 .549 .580
31 .126 .236 .301 .356 .418 .459 .496 .541 .571
32 .124 .232 .296 .350 .412 .452 .489 .533 .563
33 .121 .229 .291 .345 .405 .446 .482 .525 .554
34 .120 .225 .287 .340 .399 .439 .475 .517 .547
35 .118 .222 .283 .335 .394 .433 .468 .510 .539
36 .116 .219 .279 .330 .388 .427 .462 .504 .533
37 .114 .216 .275 .325 .383 .421 .456 .497 .526
38 .113 .212 .271 .321 .378 .415 .450 .491 .519
39 .111 .210 .267 .317 .373 .410 .444 .485 .513
40 .110 .207 .264 .313 .368 .405 .439 .479 .507
41 .108 .204 .261 .309 .364 .400 .433 .473 .501
42 .107 .202 .257 .305 .359 .395 .428 .468 .495
43 .105 .199 .254 .301 .355 .391 .423 .463 .490
44 .104 .197 .251 .298 .351 .386 .419 .458 .484
45 .103 .194 .248 .294 .347 .382 .414 .453 .479
46 .102 .192 .246 .291 .343 .378 .410 .448 .474
47 .101 .190 .243 .288 .340 .374 .405 .443 .469
48 .100 .188 .240 .285 .336 .370 .401 .439 .465
49 .098 .186 .238 .282 .333 .366 .397 .434 .460
50 .097 .184 .235 .279 .329 .363 .393 .430 .456

*For sample sizes greater than 50, use

t =
r

r n

s

( )/( )1 2− −s
2

With n = n − 2 degrees of freedom to obtain the approximate P value.
Adapted from Zar JH. Biostatistical Analysis, 4th ed. Englewood Cliffs, NJ: Prentice-Hall; 1999, Appendix 116–117. Used by permission.
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� TABLE 10-3. Critical Values (Two-Tailed) of the Mann-Whitney Rank-Sum T

Probability Levels Near

.05 .01

nS nB Critical Values P Critical Values P

3 4 6,18 .057
5 6,21 .036
5 7,20 .071
6 7,23 .048  6,24 .024
7 7,26 .033  6,27 .017
7 8,25 .067
8 8,28 .042  6,30 .012

4 4 11,25 .057 10,26 .026
5 11,29 .032 10,30 .016
5 12,28 .063
6 12,32 .038 10,34 .010
7 13,35 .042 10,38 .012
8 14,38 .048 11,41 .008
8 . . . . . . . . 12,40 .016

5 5 17,38 .032 15,40 .008
5 18,37 .056 16,39 .016
6 19,41 .052 16,44 .010
7 20,45 .048 17,48 .010
8 21,49 .045 18,52 .011

6 6 26,52 .041 23,55 .009
6 . . . . . . . . 24,54 .015
7 28,56 .051 24,60 .008
7 . . . . . . . . 25,59 .014
8 29,61 .043 25,65 .008
8 30,60 .059 26,64 .013

7 7 37,68 .053 33,72 .011
8 39,73 .054 34,78 .009

8 8 49,87 .050 44,92 .010

Computed from Table A-9 of Mosteller F, Rourke R. Sturdy Statistics: Nonparametrics and Order Statistics. Reading, MA: Addison-Wesley; 1973.



�  TABLE 10-7. Critical Values (Two-Tailed) of 

Wilcoxon W

n Critical Value P

5 15 .062
6 21 .032

19 .062
7 28 .016

24 .046
8 32 .024

28 .054

Data from Table A-11 of Mosteller F, Rourke R. Sturdy Statistics: 
Nonparametrics and Order Statistics. Reading, MA: Addison-Wesley; 
1973.

� TABLE 10-14. Critical Values for Friedman χ2
r

k = 3 Treatments k = 4 Treatments

n χr
2

P n χr
2

 P

3 6.00 .028 2 6.00 .042
4 6.50 .042 3 7.00 .054

8.00 .005 8.20 .017
5 5.20 .093 4 7.50 .054

6.40 .039 9.30 .011
8.40 .008 5 7.80 .049

6 5.33 .072 9.96 .009
6.33 .052 6 7.60 .043
9.00 .008 10.20 .010

7 6.00 .051 7 7.63 .051
8.86 .008 10.37 .009

8 6.25 .047 8 7.65 .049
9.00 .010 10.35 .010

9 6.22 .048
8.67 .010

10 6.20 .046
8.60 .012

11 6.54 .043
8.91 .011

12 6.17 .050
8.67 .011

13 6.00 .050
8.67 .012

14 6.14 .049
9.00 .010

15 6.40 .047
8.93 .010

Data from Owen DB. Handbook of Statistical Tables. US Department of Energy. Reading, MA: Addison-Wesley; 1962.



  �Power Charts for Analysis of Variance*

*These charts are adapted from Pearson ES, Hartley HO. Charts for the power function for analysis of variance tests, derived from the non-central F 
distribution. Biometrika. 1951;38:112–130.
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Answers to Exercises

2-1 The mean is the sum of the observations divided 
by the number of observations, 24: 965/24 = 40.2. To 
find the median we list the observation in order, then 
select the (50/100)(24 + 1) = 12.5th point, which is the 
average of the 12th and 13th observations, (29 + 30)/2 = 
29.5. The standard deviation is the square root of the sum 
of the squared differences between the observations and 
the sample mean divided by the sample size minus 1, 29.8. 
The 25th percentile is the (25/100)(24 + 1) = 6.25. Thus, the 
25th percentile is between the 6th and 7th observation, 
which we average to obtain (13 + 13)/2 = 13. Likewise, the 
75th percentile is (75/100)(24 + 1) = 18.75, so we average 
the 18th and 19th observations to obtain (70 + 70)/2 = 70. 
The fact that the median is very different from the mean 
(29.5 versus 40.2) and not located roughly equidistant 
between the top and bottom quartile indicates that the 
data were probably not drawn from a normal distribution. 
(If the data were symmetrically distributed about the 
median, we could have further checked for normality by 
computing the 2.5th, 16th, 84th and 97.5th percentiles and 
comparing them with values 2 and 1 standard deviations 
below and above the mean, as described in Fig. 2-10.)

2-2 Mean = 61,668, median = 13,957, standard deviation = 
117,539, 25th percentile = 8914, 75th percentile = 63,555, 
mean − 0.67 standard deviations = −17,083, mean + 0.67 
standard deviations = 140,419. These data appear not to 
be drawn from a normally distributed population for sev-
eral reasons. (1) The mean and median are very different. 
(2) All the observations are (and have to be, since you 

cannot have a negative viral load) greater than zero and 
the standard deviation is larger than the mean. If the pop-
ulation were normally distributed, it would have to 
include negative values of viral load, which is impossible. 
(3) The relationship between the percentiles and numbers 
of standards deviations about the mean are different from 
what you would expect if the data were drawn from a nor-
mally distributed population.

2-3 Mean = 4.30, median = 4.15, standard deviation = 
0.67, 25th percentile = 5.25, 75th percentile = 4.79, mean 
− 0.67 standard deviations = 3.85, mean + 0.67 standard 
deviations = 4.75. These data appear to be drawn from a 
normally distributed population on the basis of the com-
parisons in the answer to Prob. 2-2.

2-4 Mean = 1709, median = 1750, standard deviation = 825, 
25th percentile = 825, 75th percentile = 2400, mean − 0.67 
standard deviations = 1157, mean + 0.67 standard devia-
tions = 2262. These data appear to be drawn from a nor-
mally distributed population on the basis of the comparisons 
in the answer to Prob. 2-1.

2-5 There is 1 chance in 6 of getting each of the following 
values: 1, 2, 3, 4, 5, and 6. The mean of this population is 
3.5.

2-6 The result is a sample drawn from the distribution of 
all means of samples of size 2 drawn from the population 
described in Problem 2-4. Its mean is an estimate of the 
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population mean, and its standard deviation is an esti-
mate of the standard error of the mean of samples of size 
2 drawn from the population in Problem 2-4.

3-1 F = 8.92, nn = 1, nd = 28. These observations are not 
consistent with the null hypothesis that there is no differ-
ence in the average rate of ATP production in the two 
groups; we conclude that the rate of ATP production 
depends on insulin resistance (P < .01).

3-2 F = 64.13, nn = 4, nd = 995. Mean forced midexpiratory 
flow is not the same, on the average, in all of the experi-
mental groups studied (P < .01).

3-3 F = 131,700/10,601 = 12.42 with nn = 2 - 1 = 1 and 
nd = 2(21 - 1) = 40. From the table of critical values in 
Table 3-1, P < .01.

3-4 Yes. F = 4997/135 = 37.01 with 3 numerator and 156 
denominator degrees of freedom. Comparing this value 
with the table of critical values in Table 3-1, P < .01.

3-5 F = 2.15, nn = 1, nd = 98. This value of F is not large 
enough to reject the hypothesis that there is no difference 
in vertebral bone density between similarly aged men and 
women who have had vertebral bone fractures.

3-6 F = 3.450, nn = 3, nd = 96. Health professionals in at 
least one unit experience more burnout than those in the 
others (P < .02).

3-7 F = 95.79, nn = 3, nd = 57. At least one strain of mouse 
differs in response to estrogen (P < .01).

3-8 No. F = 1.11, nn = 4, nd = 130, which does not approach 
the critical value of F that defines the upper 5% of possible 
values under the null hypothesis of no difference among 
the groups, 2.37. Therefore, we cannot reject the null 
hypothesis that all these samples were drawn from the 
same population.

4-1 s2 = (11.62 + 8.82)/2 = 106 and t = (54.4 - 58.2)/

106 29 106 24 1 338/ / .+ = − with n = 29 + 24 - 2 = 51 
degrees of freedom. From Table 4-1, .20 < P < .10, so there 
is not a detectable difference in ages in the two groups.

4-2 Yes. t = 5.916 with 138 degrees of freedom. P < .001.

4-3 t = − + =( )/ / / .555 394 65 21 65 21 8 0262 2
with n = 2

(21 - 1) = 40 degrees of freedom. From Table 4-1, P < .001.

4-4 Because standard errors of the mean are reported, they 
first need to be converted to standard deviations by mul-
tiplying each by the square root of the sample size, yield-
ing standard deviations of 10.5 and 10.4, respectively, 
before computing t = -.154 with 260 degrees of freedom. 
P > .50. There is no detectable difference in the ages.

4-5 Problem 3-1: t = 2.986, n = 40, P < .01; Problem 3-3: t 
= 3.525, n = 40, P < .001; Problem 3-5: t = − 1.467, n = 98, 
P < .01. In both these cases, we can reject the null hypoth-
esis of no difference between the groups. t  2 = F.

4-6 People who work in a smoky environment and light 
smokers form one subgroup; each of the other groups are 
distinct subgroups. Here are the results of the pairwise 
comparisons using a Holm-Sidak t test (with n = 995) 
with 1 = nonsmokers in smoke free environment, 2 = 
worked in smoky environment, 3 = light smokers, 4 = 
moderate smokers, 5 = heavy smokers.

Comparison 	 P 	Pcrit P < .05?

1 vs. 5 <.001 .005 Yes
1 vs. 4 <.001 .006 Yes
2 vs. 5 <.001 .006 Yes
1 vs. 3 <.001 .007 Yes
3 vs. 5 <.001 .009 Yes
1 vs. 2 <.001 .010 Yes
2 vs. 4 <.001 .013 Yes
3 vs. 4 <.001 .017 Yes
4 vs. 5 .018 .025 Yes
2 vs. 3 .212 .050 No

4-7 All the groups have worse lung function than the non-
smokers breathing clean air (the control group).

Comparison 	 P 	Pcrit P < .05?

5 vs. 1 <.001 .013 Yes
4 vs. 1 <.001 .017 Yes
3 vs. 1 <.001 .025 Yes
2 vs. 1 <.001 .050 Yes
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4-8 The control group (no exposure) and the low expo-
sure group are not detectably different from each other. 
The Medium and High use men have lower sperm viabil-
ity than the Control/Low exposure men and each other. 
Hence, there are three subgroups in the sperm viability: 
(1) Control and Low exposure, (2) Medium exposure, and 
(3) High exposure.

Comparison 	 P 	Pcrit P < .05?

Control vs. High <.001 .009 Yes
Low vs. High <.001 .010 Yes
Control vs. Medium <.001 .013 Yes
Medium vs. High <.001 .017 Yes
Low vs. Medium <.001 .025 Yes
Control vs. Low .126 .050 No
n = 156

4-9 There are only three comparisons since all three 
groups are being compared against the Control group of 
men who do not use cell phones. In this case, we conclude 
that sperm viability in the Low use men is not detectably 
different from Control nonusers, whereas the Medium 
users and High users have significantly less viable sperm 
than the Control users. Note that we cannot make any 
statements about the differences or lack of differences 
between the three groups of men who use cell phones.

Comparison 	 P 	Pcrit P < .05?

Control vs. high <.001 .017 Yes
Control vs. medium <.001 .025 Yes
Control vs. low .126 .050 No
n = 156

4-10 The lowest burnout rate is in the Hemophilia service 
and the highest is in Internal Medicine. These burnout 
rates are significantly different from each other by Holm-
Sidak t tests. None of the other units are significantly dif-
ferent from each other, including the Internal Medicine 
and Infectious Disease, the unit with the second highest 
burnout rate, which creates an ambiguity in interpreting 
the results. Sometimes such ambiguities arise in multiple 
comparison testing.

Comparison 	 P 	Pcrit P < .05?

Med vs. Hem .004 .009 Yes
ID vs. Hem .013 .010 No
Onc vs. Hem .034 .013 No
IM vs. Onc .426 .017 No
Med vs. ID .682 .025 No
ID vs. Onc .698 .050 No
n = 96

4-11 a No, b No, c No, d Yes.

5-1 Yes. χ2 = 1.247, n = 1, P = .264; no.

5-2 Violent suicide: χ2 = 1.380, Yates corrected χ2 = 0.870, 
n = 1, P > 0.25; suicide under the influence of alcohol: χ2 = 
18.139, Yates corrected χ2 = 16.480, n = 1, P < .001; BAC > = 
150 mg/dL: χ2 = 19.204, Yates corrected χ2 = 17.060, n = 1, 
P < .001; suicide during weekend: χ2 = 4.850, Yates cor-
rected χ2 = 4.020, n = 1, P < .05; parental divorce: χ2 = 5.260, 
Yates corrected χ2 = 4.340, n = 1, P < .05; parental violence: 
χ2 = 9.870, Yates corrected χ2 = 8.320, n = 1, P < .01; paren-
tal alcohol abuse: χ2 = 4.810, Yates corrected χ2 = 3.890, 
v = 1, P < .05; paternal alcohol abuse: χ2 = 5.630, Yates cor-
rected χ2 = 4.570, n = 1, P < .05. The key factors seem to be 
suicide under the influence of alcohol, BAC ≥ 150 mg/dL, 
suicide during weekend, parental divorce, parental vio-
lence, parental alcohol abuse, and paternal alcohol abuse. 
Despite the high confidence we can have in reporting these 
differences, they probably are not stark enough to be of 
predictive value in any given adolescent.

5-3 There is a possibility that the fact that the families 
declined to be interviewed reflects a systematic difference 
between the 106 suicides that were included and the ones 
that we excluded. One way to investigate whether this 
situation leads to biases would be to compare what is 
known about the families that granted interviews and 
ones that did not (using variables such as age, socioeco-
nomic status, gender of victim) to see if there were any 
systematic differences. If there were no differences, the 
lack of interviews is probably not a problem. If there are 
differences, the lack of interviews could bias the conclu-
sions of the analysis.
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5-4 For the three groups, χ2 = 21.176, n = 2, P < .001, so 
there is evidence that at least one group differs in the 
number of remissions. Comparing just nefazodone and 
psychotherapy yields:

Remission No Remission

Nefazodone 36 131
Psychotherapy 41 132

χ2 = 0.220, Yates corrected χ2 = 0.120, n = 1, P > .6. Compar-
ing nefazodone to nefazodone and psychotherapy yields:

Remission No Remission

Nefazodone 36 131
Nefazodone and  

psychotherapy
75 104

χ2 = 15.488, n = 1, P<.001.
Comparing psychotherapy with nefazodone and psycho-
therapy yields:

Remission No Remission

Psychotherapy 41 132
Nefazadone and  
  psychotherapy

75 104

The Holm-Sidak table for the pairwise comparisons is

Comparison 	 χ2 	 P 	Pcrit P < .05?

N vs. N and P 15.488 <.001 .017 Yes
P vs. N and P 12.378 <.001 .025 Yes
N vs. P .120 >.6 .050 No
n = 156

Nefazodone alone and psychotherapy alone have similar 
performance, which differs from nefazodone and psycho-
therapy combined.

5-5 There is an association between funding source and 
whether or not the study concluded that smoking restric-
tions harmed the hospitality industry. χ2 = 71.861, n = 1, 

P < .001. (Without the Yates correction χ2 = 75.871.) Note 
that a χ2 test is appropriate for these data even though the 
observed counts are less than 5 because the expected counts 
all exceed 5. It is the expected, not observed, counts that 
determine whether or not the χ2 test can be used. The 
odds ratio for a study concluding that smoking restric-
tions was supported by the tobacco industry or one of its 
allies is OR = (29 × 60)/(2 × 2) = 435.

5-6 Being supported by a single drug company was not 
associated with the results of the meta-analysis (χ2 = 
1.301, n = 1, P > .25) but was associated with the conclu-
sions that were presented (χ2 = 5.369, n = 1, P <. 025), 
suggesting that there were no biases in the conduct of the 
meta-analysis, but there was in how the results were pre-
sented. (χ2 values without the Yates correction are .912 
and 6.501.)

5-7 For honorary authors among all journals, the contin-
gency table is

Journal

	 No  
Honorary  
	Authors

	Articles  
	 with  
	Honorary  
	Authors

American Journal of  
Cardiology

115 22

American Journal of  
Medicine

87 26

American Journal of  
Obstetrics and Gynecology

111 14

Annals of Internal Medicine 78 26
Journal of the American  

Medical Association
150 44

New England Journal of  
Medicine

112 24

χ2 = 11.026, n = 5, .05 < P < .10, so we do not reject the 
null hypothesis that the rate of honorary authorship does 
not vary among journals. Since we did not reject the null 
hypothesis based on all the journals, there is no need to 
subdivide the table between small and large circulation 
journals. (This negative conclusion should be taken as 
tentative, since the critical value of χ2 for P = .05 is 11.070, 
which the data just misses.) Overall, 156 of 809 articles 
(19%) included honorary authors.
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For ghost authors among all journals, the contingency 
table is

Journal

No  
Ghost  

Authors

Articles  
with  

Ghost  
Authors

American Journal of  
Cardiology

124 13

American Journal of Medicine   98 15
American Journal of Obstetrics 

and Gynecology
112 13

Annals of Internal Medicine   88 16
Journal of the American  

Medical Association
180 14

New England Journal of  
Medicine

114 22

χ2 = 8.331, n = 5, .25 < P < .10, so we do not reject the null 
hypothesis that the rate of ghost authorship does not vary 
among journals. Since we did not reject the null hypoth-
esis based on all the journals, there is no need to subdivide 
the table between small and large circulation journals. 
Overall, 93 of 809 articles (11%) had ghost authors.

5-8 χ2 = 4.880, Yates corrected χ2 = 4.450, n = 1, P < .05; 
yes.

5-9 This is a prospective study so we can compute a rela-
tive risk. Treating combination therapy as the treatment 
condition and valproate alone as the control condition, 
nTD = 59, nT = 110, nCD = 76, and nC = 110, so the relative 
risk of an emergent mood episode for people being treated 
with combination therapy compared to valproate alone is 
RR = (59/110)/(76/110) = .78. People being treated with 
combination therapy were less likely to have an episode 
than people being treated with valproate alone. To see if 
this difference is larger than expected by chance, we com-
pute χ2 for the 2 × 2 contingency table:

Therapy

	 Emergent Episode

Yes No

Combination 59 51
Valproate 76 34

For this table, χ2 = 4.908, n = 1, P < .05, so the difference 
is statistically significant. (Without the Yates correction χ2 

= 5.541.) The absolute risk reduction is .69 - .54 = .15, so 
the number needed to treat to prevent one emergent epi-
sode is 1/.15 = 6.7 or 7 people.

5-10 χ2 = 8.8124, n = 1, P < .005. She would not reach the 
same conclusion if she observed the entire population 
because the sample would not be biased by differential 
admission rates.

5-11 OR = 1.40. χ2 = 14.122, n = 1; P < .001. Smoking 
significantly increases the odds of developing renal cell 
cancer.

5-12 OR = 0.74, χ2 = 4.556, n = 1; P = .03. Stopping smok-
ing significantly reduces the risk of renal cell cancer.

5-13 RR = 0.58, χ2 = 127.055, n = 1; P < .001. Hormone 
replacement therapy is associated with a reduction in risk 
of death compared with nonusers.

5-14 RR = 1.00, χ2 = .002, n = 1; P = .962. Past use of hor-
mone replacement therapy did not affect the risk of death 
compared to never users.

6-1 f = δ/σ = 25/35 = 7. From Figure 6-9, the power is .60. 

6-2 From Figure 6-9, we would need 35 people in each diet 
group.

6-3 From Figure 6-9, f = .9. Using a standard deviation of 
35 mg/dL, δ = 31.8 mg/dL.

6-4 The power is 93% based on a difference in bone den-
sity of 14, which is 20% of 70.3.

6-5 Twenty people in each group, based on a difference of 
21, which is 30% of 70.3.

6-6 Power = .80.

6-7 From Problem 3-3, use the standard deviation for the 
normal people, 121 W, as the estimate of σ. The sample 
size per group is n =21. For a 50 W change f = δ/σ = 
50/121 = .4. From Figure 6-9, the power is .26. For a 100 
W change, the power is .74.
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6-8 n = 37 per sample.

6-9 The desired pattern of the responses is

Antibiotic Remission No Remission Total

Nefazodone .107 .215 .322
Psychotherapy .111 .222 .333
Both .172 .172 .345
Total .390 .609 1.000

f = 2.6, nn = (3 − 1)(2 − 1) = 2, so from Figure 6-10, power = .98.

6-10 N ≈ 367.

7-1 95% confidence interval: 1233 to 2185 ng/g; 90% con-
fidence interval: 1319 to 2100 ng/g.

7-2 95% confidence interval for the difference: .72 to 3.88 
μmol/g of muscle/min. Since this interval does not include 
0, we reject the null hypothesis of no difference (P < .05).

7-3 95% confidence intervals: Anesthetic gel: 0 to .17; Pla-
cebo: .08 to .32; Difference −.28 to + .04. We cannot reject 
the null hypothesis of no difference in effect between the 
placebo and the anesthetic gel. This is the same conclusion 
we reached in Problem 5-1.

7-4 The 95% confidence interval for the difference is 120 to 
201 meters. Because the confidence interval includes zero, 
we cannot reject the null hypothesis of no difference with P 
< .05. In Problem 4-3, we rejected the null hypothesis of no 
difference with P < .001, which would be the same as check-
ing if the 99.9% confidence interval excludes 0. The 99.9% 
confidence interval for the difference extends from 161 – 
3.2905 × 20.7 = 92.8 to 161 + 3.2905 × 20.7 = 229.1, which 
does not include zero, so we could have obtained the same 
level of confidence in rejecting the null hypothesis using 
confidence intervals as we did using a t test in Chapter 4.

7-5 The standard error of the proportion for the 49 stud-
ies funded by a single drug company is .071 so the 95% 
confidence interval for the proportion with positive 
results extends from .55 – 1.960 ×  .071 = .41 to .55 + 
1.960 × .071 = .69. For the 75 studies funded in other 
ways, the standard error of the proportion is .055, so the 
95% confidence interval extends from .65 – 1.960 × .055 = 
.54 to .65 + 1.960 × .055 = .76. 

7-6 95% confidence interval for 90% of the population: 
−518 to 3936 ng/g lipid; 95% confidence interval for 95% 

of the population: −930 to 4349 ng/g lipid. The negative 
numbers at the lower ends of the confidence intervals are 
possible members of the actual populations; these negative 
numbers reflect the conservative nature of this computa-
tion based on small sample sizes.

7-7 s ln OR = 1 29 1 2 1 2 1 60 1 025/ / / / .+ + + = so the 95% 
confidence interval for the odds ratio is 

e eln lnOR435 1 96 1 025 435 1 96 1 025− × + ×< <. . . .

e e4 066 8 084. .< <OR

     58 3242< <OR

The 95% confidence interval does not include 1, so we can 
reject the null hypothesis that the funding source does not 
affect the conclusions drawn from the meta-analyses.

7-8 OR = 1.40. The 95% confidence interval is from 1.18 
to 1.66, which does not include 1. Therefore, we conclude 
that smoking significantly increases the risk of renal cell 
cancer.

7-9 OR = 0.74. The 95% confidence interval is from .57 to 
.96, which does not include 1. Therefore, we conclude that 
stopping smoking significantly reduces the odds of devel-
oping renal cell cancer.

7-10 RR = 0.61. The 95% confidence interval is from .56 to 
.66, which does not include 1. Therefore, we conclude that 
hormone replacement therapy reduces the risk of death.

7-11 RR = 1.00. The 95% confidence interval is from .94 
to 1.07, which includes 1. Therefore, we cannot conclude 
that past use of hormone replacement therapy affects the 
risk of death.

8-1 a: a = 3.00, b = 1.30, r = .792; b: a = 5.10, b = 1.24, r = 
.941; c: a = 5.60, b = 1.23, r = .973. Note that as the range 
of data increases, the correlation coefficient increases.

8-2 a: a = 24.3, b = .36, r = .561; b: a = 0.5, b = 1.15, r = 
.599. Part a illustrates the large effect one outlier point 
can have on the regression line. Part b illustrates that 
even though there are two different and distinct pat-
terns in the data, this is not reflected when a single 
regression line is drawn through the data. This problem 
illustrates why it is important to look at the data before 
computing regression lines through it.
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8-3 a = 3.0, b = 0.5, r = .82 for all four experiments, despite 
the fact that the patterns in the data differ from experi-
ment to experiment. Only data from experiment 1 satis-
fies the assumption of linear regression analysis.

8-4 Yes. As maternal milk PCB levels increase, children’s 
IQ at 11 years of age falls; the slope is −.021 (standard 
error .00754, so t = −2.785 with 12 degrees of freedom; P 
< .05). The Pearson product-moment correlation, r, is 
−.63 (also P < .05). You could also have tested the hypoth-
esis of no relationship with a Spearman rank-order cor-
relation, which would yield rs = −.610 (P < .05).

8-5 Use the Bland-Altman method to compare the two 
methods of estradiol measurement. The mean difference 
is −25.9 pg/mL and the standard deviation of the differ-
ences is 19.4 pg/mL. These results suggest that there is not 
particularly good agreement between the two methods, 
with the blood spot yielding lower results and a substan-
tial amount of variability in the results of the two methods 
in comparison with the magnitude of the observations.

8-6 These regression results are computed after conducting 
the regressions of relaxation force as the dependent variable 
against ln (arginine level) as the independent variable:

Slope Intercept sy·x P

Acetylcholine −7.85 −50.5 13.80 .024
A23187 −10.3 −57.1 15.03 .009
Common  

estimate
−9.03 −54.0 14.08 .001

To do the overall test of coincidence, we compute

sy xp⋅ = − + −
+ −

=2
2 211 2 13 80 13 2 15 10

11 13 4
211

( ) . ( ) .
..40

and

sy ximp⋅ = + − − + − =2
211 13 2 14 16 11 13 4 211 40

2
9

( ) . ( ) .
11 56.

so that F = 91.56/211.40 = .433 with nn = 2 and nd = 20, 
which does not even approach the critical value of 3.49 
required to reject the null hypothesis of no difference with 
P < .05. Therefore, we cannot reject the null hypothesis 
that there is no difference between the two relationships; 
given the very small value of F, we can be reasonably con-
fident in concluding that the two different stimuli have 
similar effects on force levels (arterial relaxation).

8-7 There is a significant relationship. rS = .912, n = 20, P < .001.

8-8 rS = .472, n = 25, P = .018 (including tie adjustment). 
There is a significant relationship between these two 
different ways of measuring the extent of cancer, but the 
correlation is weak enough that they cannot be used inter-
changeably for clinical purposes. Results without tie 
adjustment: rS = .402, n = 25, P = .047.

8-9 Power = .999.

8-10 n = 20, so this study could have been done with a 
smaller sample size than was actually used.

8-11 To answer the question, we fit linear regressions to the 
two groups of men, then do an overall test of coincidence. 
For controls I = −1.77R + 2.59, r = −0.800, sslope = 0.369, 
sintercept = 0.336, sI×R = 0.125, n = 15. For relatives: I = −0.18 
R + 0.932, r = −0.075, sslope = 0.651, sintercept = 0.932, sI × R = 
0.219, n = 15. For common regression: I = −1.09 R + 1.88, 
r = −0.432, sslope = 0.441, sintercept = 0.405, sI ×R = 0.211, n = 
30. Overall test of coincidence: F = 6.657 with nn = 2 and nd 
= 26; P < .01; the relationships are different. Test for differ-
ence in slopes: t = −2.137, n = 26, P < .05. Test for difference 
in intercepts: t = 2.396, n = 26, P < .05. Therefore, the slopes 
and intercepts of the two lines are significantly different. 
The relationship between physical fitness and insulin index 
is different in these two groups of men.

9-1 The mean difference is 1.18 with a standard error of 
.32. t = -3.668 with n = 14 − 1 = 13 degrees of freedom. 
From Table 4-1, P < .005. The 95% confidence interval for 
the difference is from .49 to 1.87.

9-2 There is a significant difference. t = 6.160 with n = 7, 
P < .001.

9-3 δ = 9 ms (half the 18 ms difference observed in Prob. 
9-2) and σ = 8.3 ms, the standard deviation of the differ-
ences before and after breathing secondhand smoke so the 
noncentrality parameter f = 9/8.3 = 1.1. From the power 
chart in Figure 6-9, the power is .75.

9-4 F = 37.94, nn = 1, nd = 7, P < .01. F = t 2.

9-5 F = 0.519, nn = 2, nd = 6. This value falls far short of 
5.14, the critical value that defines the greatest 5% of pos-
sible values of F in such experiments. Thus, we do not 
have sufficient evidence to conclude that there are differ-
ences in C reactive protein over time (P >.50).
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9-6 There are significant differences between the different 
experimental conditions (F = 50.77, nn = 3, nd = 33). Mul-
tiple comparisons using the residual mean square and 
Holm-Sidak t test show that testosterone levels are greater 
before capture than at any time after. In addition, testos-
terone levels after 48 hours of capture are decreased com-
pared to time of capture and 12 hours post-capture, which 
do not differ.

9-7 By McNemar’s test: χ2 = 4.225, n = 1, P < .05. No; 
indomethacin is significantly better than placebo.

9-10 When the data are presented in this format, they are 
analyzed as a 2 × 2 contingency table. χ2 = 2.402, n = 1, 
P < .10, so there is no significant association between 
drug and improvement of shunting. This test, in contrast 
to the analysis in Prob. 9-8, failed to detect an effect 
because it ignores the paired nature of the data, and so is 
less powerful.

10-1 zT = 2.080, P < .05; there is a significant difference in 
the level of adhesions between the two groups. (Adjusting 
for ties, zT = 2.121, P < .05.)

10-2 A Kruskal-Wallis test yields H = 15.161 with n = 3, 
P = .002. There is a significant difference among the treat-
ments. The table below shows the results of pairwise com-
parisons using Mann-Whitney tests with a Holm-Sidak 
correction with a 5% family error rate.

Comparison zT P j
Pcrit = αT/
(k−j+1)

P < 
Pcrit?

Baseline vs. 
C&L

3.609 <.001 1 .0102 Yes

Info vs. C&L 1.993 .046 2 .0127 No
Info vs.  

Cards
1.674 .094 3 .0170 No*

Baseline vs. 
Info

1.588 .112 4 .0253 No*

Cards vs.  
C&L

.289 .773 5 .0500 No*

*Because the second comparison is not significant, all subsequent 
comparisons are considered not significant.

This analysis yields ambiguous results in that it shows that 
none of the interventions are significantly different from 

each other while the baseline differs from the cards plus 
the lectures, but none of the other interventions. 

10-3 Problem 9-5: Endotoxin and salbutamol did not 
affect CRP levels (χr

2 = 1.5, k = 3, n = 4, P > .05). 

10-4 Capture produced significant differences in testoster-
one levels (χr

2 = 27.3, n = 3, P < .001). The table below 
shows the results of pairwise comparisons using Wilcoxon 
signed-rank tests with a Holm-Sidak correction with a 5% 
family error rate.

Comparison zw P j
Pcrit = αT/
(k−j+1)

P < 
Pcrit?

Begin vs.  
capture

3.039 0.002 1 .0085 Yes

Begin vs. 12 h 3.039 0.002 2 .0102 Yes
Begin vs. 24 h 3.039 0.002 3 .0127 Yes
12 h vs. 24 h 2.961 0.003 4 .0170 Yes
Capture vs.  

12 h 
1.863 0.062 5 .0253 No

Capture vs.  
24 h 

1.627 0.103 6 .0500 No*

*Because the second comparison is not significant, all subse-
quent comparisons are considered not significant.

The testosterone levels increase significantly between the 
beginning of the study to after capture. From capture 
through the end of the experiment the levels are not 
detectably different (although there is a detected differ-
ence between 12 and 24 hours).

10-5 T = 195.0, nS = 15, nB = 15; zT = 1.535 and P > 10. 
They do not appear to have different cholesterol levels.

10-6 The Mann-Whitney rank-sum test yields zT = 3.870 
(P < .001), so problem gambling substance abusers exhibit 
riskier sexual behavior than non-problem gambling sub-
stance abusers.

10-7 W = −91.0 with n = 14, so compute 

σw = + × + =14 14 1 2 14 1 6 31 86( )( )/ .  

so andz Pw = − − = <( )/ . . . .� �91 31 86 2 841 0051
2
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10-8 Yes, G is a legitimate test statistic. The sampling dis-
tribution of G when n = 4:

G Possible Ways to Get Value Probability

0 1 1/16
1 4 4/16
2 6 6/16
3 4 4/16
4 1 1/16

When n = 6:

G Possible Ways to Get Value Probability

0 1 1/64
1 6 6/64
2 15 15/64
3 20 20/64
4 15 15/64
5 6 6/64
6 1 1/64

G cannot be used to conclude that the treatment in the 
problem had an effect with P < .05 because the two most 
extreme possible values (i.e., the two tails of the sampling 
distribution of G), 0 and 4, can occur 1/16 + 1/16 = 1/8 = 
0.125 = 12.5% of the time, which exceeds 5%. G can be 
used for n = 6, where the extreme values, 0 and 6, occur 
1/64 + 1/64 = 2/64 = .033% of the time, so the (two-tail) 
critical values (closest to 5%) are 1 and 6.

11-1 Here is the survival curve in tabular form:

Month
	Cumulative  
Survival, S(t)

∧
Standard  
	 Error

95%  
Confidence  

Interval

Lower Upper

1 0.971 0.028 0.916 1.000
2 0.943 0.039 0.866 1.000

3 0.857 0.059 0.741 0.973

4 0.828 0.064 0.702 0.953

5 0.798 0.068 0.664 0.932

6 0.768 0.072 0.628 0.909

7 0.709 0.078 0.557 0.861

8 0.680 0.080 0.524 0.836

9 0.650 0.082 0.490 0.810

12 0.582 0.086 0.413 0.751

13 0.548 0.088 0.376 0.719

15 0.513 0.089 0.340 0.687

16 0.411 0.088 0.237 0.584

20 0.308 0.084 0.144 0.472

21 0.274 0.081 0.115 0.433

28 0.235 0.079 0.081 0.389

34 0.196 0.075 0.049 0.342

56 0.130 0.073 0.000 0.273

62 0.065 0.059 0.000 0.180

84 0.000 0.000 0.000 0.000

The median survival time is 16 months.
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11-2 The survival curves for the two groups are: Use the log rank test to compare the two survival curves. 
The sum of the differences between expected and observed 
number of survivals at each time is −13.243; the standard 
error of the differences is 3.090, so z = −4.285 (or −4.124 
with the Yates correction). We conclude that there are  
significant differences in survival between these two 
groups of people, P < .001.

11-3 ψ = ln .4/ln .2 = .569 so the number of required 
deaths is 

d = +
+
−







=( . . )
.

.
.1 960 842

1 569

1 569
278 92

2

and the number of people in each group would need to be 
n = 278.9 / (2 − .4 − .2) = 199.

11-4 The survival curves and calculations for the log 
rank test are in the table below. The median time to 
event for combined therapy was 21 months and 
9 months for valpone therapy. So UL = −15.497 and

sU L

2 27 654= . a n d z = − − =( . )/ . . ,� �15 497 27 654 2 8521
2  

High IADL Score Low IADL Score

Month Survival, S
∧

Hi(t) Month Survival, S
∧

Lo(t)

14 0.988 6 0.967
20 0.963 12 0.934
24 0.925 18 0.867
28 0.913 24 0.85
30 0.887 28 0.782
38 0.861 32 0.714
48 0.834 36

42
47
48

0.643
0.584
0.522
0.48

Month

		 Survival Curves Log Rank Test

Combined  
Therapy Valpote

Total
Fraction  

with Events

Expected  
Number of 

Events Difference
Contribution  

to sU
2

L
At Risk Events

0 1.000 1.000 220 0 0.000 0.000 0.000 0.000
3 0.873 0.691 220 48 0.218 24.000 −10.000 9.425
6 0.718 0.523 170 35 0.206 19.765 −2.765 6.873
9 0.625 0.457 133 17 0.128 9.842 0.158 3.642

12 0.560 0.429 115 10 0.087 5.826 1.174 2.240
15 0.522 0.368 101 10 0.099 5.842 −1.842 2.211
18 0.502 0.337 89 5 0.056 2.978 −0.978 1.150
21 0.459 0.279 76 9 0.118 5.566 −1.566 1.897
24 0.447 0.279 53 1 0.019 0.679 0.321 0.218
27 0.447 0.279 26 0 0.000 0.000 0.000 0.000
30 0.447 0.279 4 0 0.000 0.000 0.000 0.000
33 0.447 1 0 0.000 0.000 0.000 0.000
36 0 0 0.000 0.000 0.000 0.000

Total −15.497 27.654

P < .005. The combined therapy produced better results 
than valpone alone. 
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Index

A
Adenosine triphosphate (ATP), 44
Adhesions, 226
Adult leukemia, bone marrow transplant for treatment 

of, 237–242, 254
Advance directives, 72, 73, 77–78, 79–80, 139
AIDS, 25, 46, 227–228
Allogenic versus autologous transplants, 237–242, 254
Analysis of variance:

assumptions, 27–28, 34, 205
between groups sums of squares, 192–139, 193
between groups variance, 32, 193
Bonferroni t test to isolate differences, 62–63, 67, 
class of procedures, 27
computational formulas, 259
degrees of freedom, 38, 193
Dunnett’s test to isolate differences, 64n, 
examples, 38–44, 56–59, 190–193
F, 34–38, 192–193, 194
general approach, 27–30, 189–190
Holm t test to isolate differences, 64–65, 67, 200
Holm-Sidak test to isolate differences, 65–67
limitations, 205
mean squared, 193
method based on ranks (See Kruskal-Wallis test)
multiple comparisons procedures, 62–67, 87, 88, 200, 

219–222, 225
notation in terms of sums of squares, 190–193
null hypothesis, 27, 189
one way, 34–38, 259
paired t test,  181–187
parametric method, 29–30
partitioning sums of squares, 193–194
power, 116, 117
power function, 277–285

repeated measures (See Repeated measures analysis of 
variance)

sample size, 116
single-factor, 34–38
Student-Newman-Keuls test to isolate differences,  

64n, 
t test, 56, 59–60, 186–187
table, 194
total sum of squares, 193
treatment of sum of squares, 190–193
Tukey test to isolate for differences, 64n, 
Two-way, 44
unpaired t test (See t test, unpaired)
when to use, 205
within groups sum of squares, 192
within groups variance, 31
(See also t test, paired; t test, unpaired)

Anesthesia, 95
Angina pectoris, 251
Anti-asthmatic drugs and endotoxin, 197–200,  

224–225
Antibiotics:

inappropriate use, 226–227
prescribing, 136

Area under the curve (to define critical value of test 
statistic), 34–38

Arterial function, 181
Arthritis, rheumatoid, 161–164
Association:

versus causality, 144–145
and correlation, 164
and regression, 143, 144–145
(See also Pearson product-moment correlation 

coefficient; Spearman rank correlation 
coefficient)

The n after a page number indicates footnote.
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Assumptions:
for analysis of variance, 27–28, 34–38, 205
for Bernoulli trials, 78
for confidence intervals, 126
for paired t test, 186, 205
for unpaired t test, 205

Authorship, 96–97
ghost authors, 96
honorary authors, 96

Autologous versus allogenic transplants, 237–242,  
254

Autopsy data, 98n
Average (See Mean)

B
Bayes’ Rule, 70n, 70
Bayesian decision-making:

approach 70
interpretation of P values, 70n

Berkson’s fallacy, 257
Bernoulli trials, 78
Best fit (See Linear regression)
Beta error (See Type II error)
Between groups sum of squares, 192–193
Between groups variance, 32
Bias:

on behalf of treatment, 5
and control group, 250, 252
definition, 12
due to observers, 187–189
due to poor design, 5
examples of, 12–13
placebo effect, 12–13
and randomization, 29, 250, 252–253
in a sample, 5, 12–13
in selection process, 252
sources, 12–13

Binomial distribution, 77n, 137, 137n
Bipolar disorder, 97–98, 245
Bland-Altman test:

calibration, assessed with, 174–177
correlation, contrasted with,  

174–175
description, 174–175
example, 175–177
when to use, 249

Blinding, 12, 13
Boiling oil, for gunshot wounds, 254

Bone marrow transplant for treatment of adult leukemia, 
237–242, 254

Bonferroni t test (or Bonferroni correction):
basis of multiple comparison procedure,  

62–63, 64
compared with exact Type I error, 65
control group, 67
definition, 62–63
examples, 63–64, 87, 
versus Holm-Sidak test, 65–67
versus Holm t test, 64–65
inequality, 62, 65
for Mann-Whitney rank sum test,  

219–220
multiple comparisons, 62–63
rejective criterion, 64–65
subdividing contingency table, 87
tests of accumulating data, 253n
for unpaired t test, 62

Breast cancer, 94–95, 140, 200–202
Burnout, 45

C
Cancer:

breast, 94–95, 140, 200–202
lung, 13–14, 244
mouth, 181
renal, 98

Cannabis for pain control in diabetic neuropathy, 23, 71, 
211–213

Case
Case-control study:

computation, 93–94
definition, 93
example, 94–95
identifying, 93
and odds ratio, 93–94
versus prospective study, 93–94

Causality:
versus association, 144–145
in observational versus experimental study, 41
and regression, 144–145

Cell phones and sperm function, 38–42, 56–59, 63–64, 
156–159, 172–173, 247–248

Censored data:
definition, 230
to estimate survival curve, 230–234
left censoring versus right censoring, 230n
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Central limit theorem:
and confidence intervals, 137n
implications, 18
and proportions, 76
and regression, 137n, 154, 156
statement, 18

Chi-square:
analysis of contingency table, 80–86, 85, 201, 249, 260
Bonferroni correction for multiple comparisons, 87
contrasted with McNemar test, 201–202
distribution with one degree of freedom, 83–84
how to use, 87
and odds ratio, 93–94
power, 121
relationship with z for comparing proportions, 82–83
and relative risk, 91–92
restrictions on use, 83–84
sample size, 121
table of critical values, 85
to test for normal distribution, 206
to test paired data on nominal scale, 201
test statistic, 81–85
ties, 219n
used with Friedman’s statistic, 223
Yates continuity correction (See Yates correction, 

for continuity)
Cigarette smoking:

and platelet function, 187–189, 217
secondhand smoke, 44–45

Chocolate, 202
Chronic obstructive pulmonary disease, 45, 71–72,  

113–114
Clinical trial:

Vs. epidemiological studies, 91, 92
negative conclusions, 133, 134
outcome measures, 84
prospective studies, 14, 91–93
source of censored data, 230
stratified sampling, 12
between two nominal variables, 91
(See also Randomized trial)

Coefficient of determination, 167
Cohort studies, 92n
Collecting data:

goals for, 7
stratification, 12
ways to, 13

Comparative effectiveness research, 2

Complication rates, 137–138
Confidence, 129–130
Confidence interval:

assumption of normal distribution, 126
definition, 125, 127
dependence on experimental design, 250
dependent on sample, 127, 127–129
for difference of population means, 126, 126n, 

132
for difference of proportions, 132–133
examples, 127–129, 133, 136, 154–155
for intercept, 155
for line of means, 155–156
for mean, 126, 126n, 132
meaning, 126, 129–130
for an observation in regression, 156
for odds ratio, 94n, 138–140
for population, 132
for power, 126n
for proportion, 136–138
for regression, 155–156
for relative risk, 94n, 138–140
for slope, 154
for survival curve, 234–235
to test hypothesis, 125, 130–132, 155–156

Confounding variable:
control for, 14n
definition, 13
example, 13–14,
in observational studies, 13–14, 57

Contingency table:
chi-square versus Fisher exact test, 87–91
and comparison of observed proportions, 86–87
definition, 80
degrees of freedom, 83–84
examples, 81–87
with more than two treatments or outcomes, 86–87
and odds ratio, 93–94
for paired data, 201
power, 121
and relative risk, 91–92
restrictions on use of chi-square, 83–84
sample size, 121
subdividing, 87
summary of procedure, 87
when to use, 249, 250
(See also Chi-square; Fisher exact test; McNemar test; 

Odds ratio; Relative risk)
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Continuity correction:
effect, 84
for Mann-Whitney rank sum test, 211
need for, 79
for odds ratio, 93–95
for relative risk, 91–92
for 2 × 2 contingency table, 84
for Wilcoxon signed rank test, 216
for z statistic, 79
(See also Yates correction, for continuity)

Control:
control event rate, 92
group, 40
and odds, 93–94
versus prospective study, 93–94
and relative risk, 91

Control event rate, 92
Control group:

and bias, 4, 4n, 12, 250, 252
necessity, 189, 250

Coronary artery disease, 254–256
Correlation coefficient:

and coefficient of determination, 167
computation, 165–168
general characteristics, 164–165
nonparametric (See Spearman rank correlation 

coefficient)
strength of association, 143
(See also Pearson product-moment correlation 

coefficient; Spearman rank correlation 
coefficient)

Cost:
of medical care (See Medical care, costs)
of statistical errors, 5, 257–258

Critical values:
of chi-square, table, 85
computation, 67
of F, table, 35–37
of Friedman’s statistic, table, 224
of Mann-Whitney rank sum statistic, T, table, 

210
normal (one-tail), table, 108–109
one versus two-tailed, 107
of Spearman rank correlation coefficient, table, 171
of t, (two-tailed), table, 57
of t test (one-tail), table, 108–109
of Wilcoxon signed-rank test statistic, W, table, 

216

D
Data, collecting (See Collecting data)
Dartmouth Atlas of Health Care, 1
Decision making:

Bayesian, 70
clinical, 69–70
meta-analysis, 134–136
statistical, 69–70

Degrees of freedom:
analysis of variance, 38, 192–193
for contingency table, 83–84
for linear regression, 154, 168
for paired t test, 186
partitioning, 193–194
purpose, 38
for repeated-measures analysis of variance,  

196
and sums of squares, 193
for unpaired t test, 56
and variance, 193

Dependent variable, 144
Depression, 95–96
Descriptive statistics, 24
Diabetes, 44, 124, 179–181, 183, 227

and erectile dysfunction, 181–182
neuropathy, 23–25, 71, 211–213

Dioxin, 97
Distribution:

chi-square, 82–83
F, 34–38, 38
normal (See Normal distribution)
parameters, 8–9
of population, 8–9
shape, 9
skewed, 19–20, 21
t, 55
T, 205–206
W, 215–217

Distribution-free method, 30n, 206
(See also Nonparametric method)

DNA damage, 156–159, 172–173
Double-blind study:

and bias, 13, 211, 189, 250
definition, 211
example, 211–213
mechanism to carrying out,  

211
Dunnett’s test, 64n
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E
Echocardiography to assess mitral regurgitation,  

175–177
Effectiveness of medical procedures, 4–5
Endothelial function, 181
Endotoxins, 197–200, 203, 224–225
Epidemiological study:

versus clinical trials, 91, 92
measures of association, 91
versus prospective studies, 91, 92, 92n

Erectile dysfunction, 181
Errors:

in medical journals, 2
Type I (See Type I errors)
Type II (See Type II errors)
in use of statistics, 4–5

Estimating proportion from sample, underlying 
assumptions, 78

Estrogen, 46
Ethical implications:

and poorly designed studies, 258
of randomization, 253

Experimental study, versus observational study, 41
Evaluation of therapy, 2, 253 
Evidence synthesis, 247–248
Examples:

adenosine triphosphate (ATP), 44
adhesions following surgery, 226
advanced directives for homeless people, 72, 73, 

77–78, 79–80, 139
AIDS, 25, 46, 227–228
analgesia, 95
angina pectoris, 251
anti-asthmatic drugs and endotoxins, 197–200,  

224–225
antibiotic prescribing, 136
antibiotics, 226–227
articles with statistical errors, 4–5, 89–91,
authorship, 96–97
bias, 12–13
boiling oil for gunshot wounds, 254
bone marrow transplant for adult leukemia, 237–242, 

254
breast cancer, 94–95, 140, 200–202
burnout, 45
cannabis and diabetic neuropathy pain, 25, 211–213
cell phones and sperm function, 42, 156–159,  

172–173, 247–248

chronic obstructive pulmonary disease, 45, 113–114
cost of treating elderly, 244–245
depression, 95–96
diabetes, 44, 179–182, 183, 227
diabetic neuropathy pain, 25, 211–213
dioxin, 97
effect of seeing smoking in movies on smokers’ brains, 

43
endothelial function, 181
endotoxins, 197–200, 203, 224–225
erectile dysfunction, 181
fallacious conclusions from autopsy data, 98n
glucose levels, 227
heart disease, 13–14, 134–136
heart rate variability, 203
HIV, 25, 46, 227–228
homeless people, 72, 73, 77–78, 79–80
hormone replacement therapy, 99, 179–182, 203
hypothermia in low birth weight infants, 119–120, 

133, 139
insulin resistance in physical fitness, 183
internal mammary artery ligation, 251
journal size and selectivity, 168–169
low birth weight infants, 119–120, 133, 139
lung cancer, 13–14, 244
marijuana, 219–222
measuring heart size, 176–177
medical investigators, 18
menopause, 99
mitral regurgitation assessed with echocardiography, 

175–177
mouth cancer, 181
observational study, 38–41
pet birds, 13–14
population, 7–9
portacaval shunt, 251–252
of random samples, 10–12, 15–18
relationship between weakness and muscle wasting in 

rheumatoid arthritis, 161–164
secondhand smoke:

and arterial function, 181
and breast cancer, 94–95, 140
and heart disease, 13–14, 134–136, 145n, 

217
and heart rate variability, 203
and lung cancer, 13–14
and lung function, 45
and pet birds, 13–14
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Examples (continued)
smoking:

and platelet function, 187–189, 217
and renal cell cancer, 98

sperm function and cell phones, 116–117, 156–159, 
172–173, 247–248

suicide in adolescents, 95
surgery to treat lung cancer, 244
testosterone, 203
vertebral fracture, 124
(See also specific statistical tests)

Expected frequency in contingency table, 81–83
Experiment, 13
Experimental design:

common errors, 5
control group, 189

Experimental study:
compared to observational study, 13, 14–15
definition, 14
example, 14–15
role of pilot study, 122

F
F, 34–38

distribution, 33, 34, 38
examples, 38–44
observational study, 38, 40, 41
for one-way analysis of variance, 38
power function, 277–285
to reject null hypothesis, 27, 32–33, 34
for repeated measures analysis of variance, 197
table of critical values, 35–37
in terms of mean of squares, 193
in terms of sums of squares, degrees of freedom, 193
to treat overall coincidence of two regression lines, 161
variance ratio, 32–33

Factorial, 89, 261
False negative, 104
False positive, 104
Fisher exact test, 87–91, 260
Fisher and 5% P value, 70–71
5% P value, 70–71
Flavenols, 202
Friedman test:

and chi-square for large samples, 223
examples, 223, 224–225
formula, 223, 261
general approach, 222–224

multiple comparisons, 225
summary procedure, 223–224
table of critical values, 224

G
Gaussian distribution (See Normal distribution)
Gehan’s test:

compared with log rank test, 242, 242n
definition, 242
when to use, 249
Yates correction for, 242

Glucose levels, 227
Greenwood’s formula for standard error of survival 

curve, 234

H
Hazard function, 237, 237n
Hazard ratio, 237
Heart disease:

meta-analysis, 134–136
and secondhand smoke, 13–14,  

134–136
Heart rate variability, 203
Histogram, 23
HIV, 25, 46, 227–228
Hochberg’s test, 64n
Holm t test:

against a single-control, 67
versus Bonferroni t test, 64–65
definition, 64
examples, 64–65 
versus Holm-Sidak test, 65–67
multiple comparisons, 64–65
power, 65
procedure, 64
rejective criterion, 64–65
repeated-measures analysis of variance, 200

Holm-Sidak test:
definition, 65
compared to Bonferroni t test, 65–67
compared to Holm t test, 65–67

Homeless people, 72, 73, 77–78, 79–80, 139
Hormones, 179–182, 203
Hospitalized patients, 256
Hypertension and insulin sensitivity, 183
Hypothermia and low birth weight infants, 71, 119–120, 

133, 139
Hypothesis test:
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definition, 3
dependency on experimental design and measurement 

scale, 248
examples, 3–4, 79–80
identification in medical journals, 5, 256
limitations, 257–258
minimize number of tests, 256
need to have hypothesis to test, 257–258
one-tailed versus two-tailed, 55
for Pearson product-moment correlation coefficient, 

164–165
for proportions, 78–79
for regression, 154–155
for Spearman rank correlation coefficient, 169–173
test of significance, 4, 27
using confidence interval, 125, 130–132, 154–155
(See also Statistical significance; and specific statistical 

procedures)

I
Independent Bernoulli trial, 78
Independent variable, 144
Insulin sensitivity and hypertension, 183
Intercept:

comparing, 160–161
of line of means, 145–147
of regression line, 150
test that notes zero, 154
(See also Linear regression)

Interval scale:
characteristics, 164
definition, 73
and hypothesis testing procedure, 248

Interpolation, 259
Journal size and selectivity, 168–169

K
Kaplan-Meier product-limit estimate of survival curve, 233
Kendall rank correlation coefficient, 169n
Kruskal-Wallis test:

and chi-square distribution, 218–219
example, 219–222
formula, 261
mean rank, 219
multiple comparisons, 219–222
outline of procedure, 219
ties, 219, 219n
when to use, 249

L
Least squares analysis (See Linear regression)
Leukemia, bone marrow transplant to treat, 237–242, 254
Line of means:

confidence interval, 155–156
definition, 145–147
intercept, 146–147
residual variation, 145–147
slope, 145

Linear least squares analysis (See Linear regression)
Linear regression:

association versus causality, 145–146
best straight line, 148–149 
comparison:

of intercepts, 160
of two regression lines, 160–164
of two slopes, 160–161

confidence interval, 155–156
criteria for best fit, 148–149
degrees of freedom, 154
dependent variable, 144–147
effect of interchanging dependent and independent 

variables, 164–165
to estimate how much one variable changes with 

another variable, 143
examples, 3, 149–150
formulas, 149, 260
hypothesis test, 152, 154
independent variable, 144–147
least squares, 149
line of means, 145–147
to make predictions, 144
multiple, 177–178
nonlinear relationships, 154n
notation contrasted with Type I and II errors, 145n
null hypothesis, 154
overall test of coincidence, 161
parametric procedure, 143
population, 143–147
regression line, 149
slope and correlation coefficient, 164–165
standard error:

of the estimate, 151–152
of the intercept, 151–154
of the slope, 151–154

variability about the line of means, 144–147
when to use, 249

Linear relationship (See Linear regression)
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Low birth weight infants and hypothermia, 71, 82,  
119–120

Log rank test:
compared with Gehan’s test, 242
power of, 242–243
and proportional hazards, 237, 242, 242n
sample size for, 242–243
when to use, 249
Yates correction for, 242

Logarithmic transformation, 168
Lost to follow-up, 230
Lung cancer, treated with surgery, 244, 201–202

when to use, 249

M
Male fertility, 46
Mammary artery ligation to treat angina pectoris, 251
Mann-Whitney rank sum test:

continuity correction, 211
examples, 209–211
for large samples, 209, 210–213
logic, 207
normal approximation, 210–211
summary of procedure, 209
T test statistic, 207
table of critical values, 210
U test statistic, 209n
when to use, 249

Marijuana, 219–222 (See also Cannabis)
McNemar test:

contrasted with chi-squared test for contingency table, 
201–202

example, 200–202
formula, 260
nonparametric method, 206, 206n
for paired data measured on nominal scale, 200
purpose, 185

summary of procedure Mean:
line of (See Line of means)
parameters, 9
for percentiles of normal distribution, 22
of population, 7, 9
sample, 10, 15, 17–18

Mean square, 192
in repeated-measures analysis of variance, 197

Measurements:
bias, 12–13
blinded, 12–13

Median:
calculation of, 20–22
definition, 20
percentiles, 19–22
of population, 7, 20–22
of sample, 19–22

Median survival time, estimating, 234
Medical care:

costs:
and biostatistics, 1–2
for elderly, 244–245
due to inaccurate medical literature, 5
inappropriate prescriptions, 136
magnitude, 1
and outcome, 84
tests and pharmaceuticals, use of 
therapies, 257

hospitalized patients, 256
role of clinicians, 2

Medical journals:
accuracy, 5
authorship, 96–97
and bias, 5
common statistical errors in articles,  

122–124
consequences of error, 5
errors and inaccuracies, 4, 5
how to improve, 257–258
information should be provided about statistical 

methods, 257–258
to keep informed, 4
lack of hypothesis test procedures, 5
letters to the editor, 258
medical investigators, 18, 122–123
quality of evidence, 136
quality of statistical analysis, 2
randomized clinical trials, 123–124
reviews, 4–5
selectivity, 168–169

Medical literature (See Medical journals)
Meta-analysis, 96–97, 133–136, 134n
Methods based on ranks:

general approach, 205–206
(See also Nonparametric method; and specific 

statistical procedures)
Mitral regurgitation, echocardiography for assessment 

of, 174–177
Mouth cancer, 181
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Movies, effect of smoking on brain function,  
43

Multiple comparison procedure:
against a single control group, 67
for analysis of variance, 62–67
based on ranks, 219–222
based on unpaired t test, 62–67
Bonferroni t test, 62–63
critical value computation, 64–65
definition, 62
examples, 63–64, 87–89
Hochberg test, 64n
Holm-Sidak procedure, 65–67
Holm t test, 64–65
incorrectly done with t test, 60–62
power, 67
rejective criterion, 65
repeated analysis of accumulating data,  

253, 253n
for repeated measures analysis of variance, 200
for repeated measures based on ranks, 225
retrospective analysis of randomized control trials, 

254–256
for subdividing contingency tables, 87
Tukey test, 64n

Multiple regression, 177–178
Muscle wasting in rheumatoid arthritis,  

161–164

N
N, 10
n!, 89n, 261
Natural logarithm, 138n
Negative result:

contrasting with proving no effect, 133
interpretation, 123–124
of randomized trials, 123
(See also Power; Type II error)

Newman-Keuls test (See Student-Newman-Keuls test)
No significant difference, meaning, 101, 103

(See also Negative result; Power)
Nominal scale:

definition, 73
hypothesis tests, 248–250

Nominal variables, 91–95
Noncentrality parameter:

for analysis of variance, 116
for chi-square, 121

for contingency table, 121
definition, 112, 116
for t test, 112, 114

Nonlinearity relationship, difficulties for linear 
regression, 154, 178–179

Nonparametric method:
chi-square, 81–87, 206
for contingency tables, 80
contrast with parametric method,  

206–207
decision to use, 206–207
Friedman test, 222–224
general approach based on ranks, 207–211
Kruskal-Wallis statistic, 218–219
and McNemar’s test, 206n
Mann-Whitney rank sum test, 207–211
methods based on ranks, 225–226
multiple comparisons, 219–222
versus parametric method, 29–30, 250
power, 206
Spearman rank correlation, 169–172, 206n
Wilcoxon signed-rank test, 213–217

Normal distribution:
approximation, importance of, 10
and central limit theorem, 18
to compute confidence interval for proportions,  

132–133
and confidence intervals for the mean, 132
critical values (one-tail), table, 108–109
definition, 10
described by mean and standard deviation, 10, 22–23, 

17–18
equation, 10
to estimate proportions from samples, 75–76
hypothesis testing procedures, 248–250
for Mann-Whitney rank sum test, 209
to obtain, 26
and parametric method, 29–30, 205–206
percentiles, 19–23
population, 22–23
and power, 118–119
required for paired t test, 185–187
and t distribution, 78–79, 133n
table, 108–109
test for normality, 10, 205–207
transforming data, 25
for Wilcoxon signed-rank test,  

213–217
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Normal probability graph paper, 206
Null hypothesis:

for analysis of variance, 27–28
for contingency table, 80–81
definition, 27
needs to be stated in articles, 258
for odds ratio, 94
for power, 118
for regression, 154
relationship to P value, 67–69
for relative risk, 92, 94
role in hypothesis testing, 103–104
for t test, 52–53

O
Observational study:

advantages, 41
compared with experiment,  

13, 14, 41
confounding variables, 13–14, 38
definition, 13
example, 14, 38–43
limitations, 41

Odds ratio:
and case-control study, 93–94
chi-square, 94
computation, 93, 94
confidence intervals, 94n, 138–139
example, 94–95, 140
formula, 93
interpretation, 91–92
natural logarithm, 138
null hypothesis, 94
power for, 121
relative risk, comparison with, 94n
sample size for, 121
standard error, 138–139

One-tail test, 107
One-tail value (See Normal distribution)
One-tail versus two-tailed tests, 55
One-way analysis of variance  

(See Analysis of variance)
Ordinal scale:

correlation, 164
definition, 164
example, 164
hypothesis tests, 249, 249n

Outcome variable, 84

P
P value:

and the Bayesian approach, 69–70
definition, 67–69
dependence on experimental design, 247, 250
and ethics of randomized trials, 253
from F distribution, 34
5% cutoff, origin of, 70–71
highly prized, 27
meaning, 60, 67–69, 70–71, 250, 253
for nonparametric methods, 209
unadjusted, 68
(See also Power)

Paired observations (See Friedman statistics; Repeated-
measures analysis of variance; t test, paired; 
Wilcoxon signed-rank test)

Paired t test (See t test, paired)
Patient Protection and Affordable Care Act, 1
Parameters:

for linear regression, 144–147
of population, 8

Parametric method:
analysis of variance, 29–30
contrast with nonparametric methods, 206–207
decision to use, 205–206
linear regression, 143
Pearson product-moment correlation, 164–165
requires normal distribution, 29–30

Partitioning sums of squares and degrees of freedom:
for analysis of variance, 193–194, 195
for repeated-measures analysis of variance, 194–197

Passive smoking and breast cancer, 94–95
PCBs, health effects, 25, 179
Pearson product-moment correlation coefficient:

definition, 164
formula, 260
hypothesis test, 168
no explicit dependent or independent variable,  

164–165
and regression, 164, 165–168
and regression slope, 167
related to sum of squared deviations about regression 

line, 165–168
when to use, 249

Percentile:
calculation of, 20–22
definition, 20
median, 20–22
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for population, 7, 20–22
for sample, 20–23, 35
skewed distribution, 21
test for normal distribution, 22–23

Pet birds, 13–14
Pilot studies, 122
Placebo effect:

and bias, 12
blinding protocol to minimize, 211
definition, 2, 2n, 23
examples, 4n, 91, 251
after internal mammary artery ligation surgery, 251
after portavacal shunt, 251–252

Planning for experiments, power to estimate sample size, 
112–113

Polychlorinated biphenyls (PCBs), health effects,  
25, 179

Pooled variance estimate:
for confidence interval for difference of mean,  

125–126
definition, 52
for proportion, 78–79
for regression lines, 160–161

Poor supervision of statistical analysis, 257
Population:

average squared deviation from the mean, 9
bias, 12–13
confidence interval, 140–142
difficulties in identifying, 256–257
distribution, 7–8, 9
examples, 3, 7–8, 9
limited sample, 7
for mean, 15, 132
meaning, 7
measure of dispersion about the mean, 9
median, 7, 20–23
normal distribution, 10, 20–21, 15
parameter, confidence interval for, 140
percentiles, 7, 19–23
of possible rankings, 207
power of test, 110–112
and proportion, 74
random (See Random sample)
range, 22–23
for regression, 144–147
sample, 10, 257–258 (described in journal article)
skewed, 19
standard deviation, 7, 9–10, 15

unobserved, 10
variability, 7–9
variance, 9–10

Portacaval shunt:
bias in uncontrolled trials, 251–252
definition, 251
and placebo effect, 252

Posterior probability, 70
Power:

analysis of variance, 116
comparing proportions, 118–119
computation, 116
and confidence interval, 126n
of contingency table, 121
for correlation, 173–174
definition, 104
to determine sample size, 112, 114, 115
examples, 116–117, 121–122
factors that determine, 105
and hypothesis testing, 115
of linear regression, 173–174
and log rank test, 242–243
multiple comparisons, 104
noncentrality parameter, 116
of nonparametric methods, 206
normal distribution, table, 108–109
not considered in published studies, 122–124
null hypothesis, 118
and odds ratio, 121
one-tail value, 108–109
and population variability, 110–112
power function of t test, 110–111, 112
practical problems in use, 122
purpose, 101
randomized trial, 123
and relative risk, 121
and repeated-measures analysis of variance,  

200
role of pilot study, 122
and sample size, 101, 112, 118–119, 121
of t test, 105, 112–113
of tests for rates and proportions, 118–121
and treatment effects, 108–110
and Type I error, 104–106, 108
and Type II error, 105, 108
with unequal sample sizes, 112–113
and Yates correction, 119n

Prior probability, 70
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Probability:
Bayes’ rule, 70, 70n
posterior, 70
prior, 70
in a random sample, 10

Prediction:
accuracy and confidence interval for an observation  

in regression, 156
with linear regression, 143

Process variable, 84
Proportion:

of population, 74
and power, 118–119

Proportional hazards:
assumption for log rank test, 237, 242
computing power and sample size for log rank test, 

242–243
definition, 237

Prospective study: 
versus case-control studies, 93
and chi-square, 92
clinical trial, 91
definition, 14, 91
difficulties, 93
versus epidemiological studies, 91–93, 93n
example, 91–92
and relative risk, 91–92

Q
Quality of evidence, 136
Quality of life, 84

R
r (See Correlation coefficient)
Random number generator, 10–11
Random numbers, table, 11
Random sample:

bias, 12
definition, 10
example, 10–11
frame, 11–12
mean, 15
population, characteristics of, 15
probability of, 10
procedure, 11–12
selection (See Random number generator)
simple, 11–12
stratified, 12

Randomization:
describe procedure in journal articles, 258
ethical implications, 253
to ensure correct conclusion, 253–254
meaning, 250
necessity, 248, 250
procedure, 252
to reduce bias, 252
table of random numbers, 11

Randomized clinical trial (See Randomized trial)
Randomized trial:

and bias, 252
common patterns, 252
definition, 14
examples, 14–15, 79–80, 211, 250, 253–256
method of choice to evaluate therapy, 14–15, 14n
with negative results, 123–124
versus nonrandomized trial, 14–15
pilot studies, 122
power of, 123–124
practical aspects, 29, 250
repeated analysis, 123
sample size, 112
(See also Randomization)

Rank order correlation coefficient (See Spearman rank 
correlation coefficient)

Ranks:
to construct hypothesis test, 206, 207–209
ranking procedure, summary of methods,  

225–226
(See also Nonparametric method)

Rates and proportions:
approximate confidence interval for, 136
confidence interval for difference, 132–133
exact confidence interval, 137–138
(See also Chi-square; Contingency table; Odds ratio; 

Relative risk)
Reactive oxygen species, 156–159, 172–173
Reader’s Digest, 251
Regression (See Linear regression)
Regression lines, comparison of two, 160–164
Rejection criterion, 65, 224–225
Relative risk:

chi-squared, 92
computation, 91–92
confidence intervals, 138
control, 91–92
example, 91–92, 139
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formula, 91
interpretation, 91–92
null hypothesis, 92, 94
odds ratio, 94n
power for, 121
and prospective studies, 91–92
sample size for, 121
standard error, 138
treatment, 91
and 2 × 2 contingency table, 92

Repeated-measures analysis of variance:
analysis of variance, table, 196
degrees of freedom, 195, 196–197
examples, 197–200, 224–225
formulas, 261
general procedure, 195
grand mean, 196
and Holm t test, 200
mean squares, 193, 196–197
multiple comparisons, 200
notation, 196
power, 200
purpose, 185, 194–195
relationship to paired t test, 189
sample size, 192
between subject sum of squares, 194–197
total sum of squares, 193, 196–197
when to use, 249
within subjects sums of squares, 193, 195, 197, 198
(See also Friedman statistic; Wilcoxon signed rank 

test)
Residual sum of squares of linear regression, 167
Rheumatoid arthritis, 161–164

S
Sample:

and bias, 5, 12–13
bias due to patient population, 247
to compute confidence, 127, 127–129
definition, 10
to estimate proportion, 75–78
limited, 7
for linear regression, 148–150
mean, 15
and population, 10, 256–257, 258
and power, 101, 110–111
random (See Random sample)
standard deviation, 15

Sample size:
for analysis of variance, 116
comparing proportions, 118–119, 120
computation, 120–121
and confidence intervals, 137
for contingency table, 121
for correlation, 173–174
to detect treatment effect, 101, 108–110
formula, 120
and log rank test, 242
noncentrality parameter, 112
for odds ratio, 121
for regression, 173–174
for relative risk, 121
small, in most studies, 123
and power, 101, 112, 118–119, 121
for t test, 112

Sampling frame, 11
Scale of measurement:

interval, 73
nominal, 73
ordinal, 164, 205
relationship to hypothesis testing procedure,  

248
Schizophrenia, 46
SD (See Standard deviation)
Secondhand smoke:

and arterial function, 181
and breast cancer, 94–95, 140
and confounding variables, 13–14
and heart disease, 13–14, 134–136,  

145n, 217
and heart rate variability, 203
and lung cancer, 13–14
and lung function, 44–45
meta-analysis, 134–136
and pet birds, 13–14

SEM (standard error of the mean) and central limit 
theorem, 17–18

Sequential analysis, 123n
Single blinded study, 13, 189
(See also Double-blinded study)
Single factor analysis of variance (See Analysis of 

variance)
Size of treatment effect:

and power, 108–110, 112, 114
worth detecting, 122

Skewed distribution, 19–20, 21
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Slope:
comparison of two regression slopes with t statistic, 

160–161
hypothesis test, 154
of line of means, 144–147
of regression line, 149

Sloppy thinking, 257–258
Smoking in movies, and smokers’ brains, 43
SNK test (See Student-Newman-Keuls test)
Spearman rank correlation coefficient:

description, 169–170
examples, 169–173
formula, 170
nonparametric method, 206n
versus Pearson product-moment correlation 

coefficient, 169–172
table of critical values, 171
when to use, 249

Sperm function and cell phones, 38–42, 56–59, 63–64, 
116–117, 156–159, 172–173, 247–248

Spinal fractures, 45–46
Standard deviation (SD):

and confidence interval for population from sample 
observation, 140–142

contrasted with standard error of the mean, 18
of a difference or a sum, 51–52
estimated from sample, 10, 15
population, 7, 9, 74–75
in population with or without given attribute, 76–77
about regression line, 150–151, 167

Standard error:
contrasted with standard deviation, 17–18, 142
cost of, 4–5, 257–258
definition, 15–16
to describe variability in data, 18
deviation of formula, 52n
to estimate:

definition, 152
between groups variance, 32

formula, 18
of the intercept, definition, 152–153
of the mean (SEM), and central limit theorem, 18
of odds ratio, 138
and Pearson product-moment correlation coefficient, 167
and population range, 142
of a proportion, 76–77
of regression coefficients, 151–154
of relative risk, 138

of the slope, definition, 152–154
of survival curve for Greenwood’s formula, 234
(See also standard error of specific statistic)

Statistical significance:
contrast with scientific or clinical significance, 125
definition, 101
dependence on sample size, 125–126
distinction with proving no effect, 101–102
and ethics, 258
Fisher and, 70
5% P value, origin of, 70–71
lack of, 123, 253
origin, 70–71
(See also Null hypothesis; P value)

Statistical tables (See Critical values)
Statisticians, feisty, 257–258
Step-down procedure, 64
Stratification, 12 (See also Random sample)
Strength of association (See Correlation coefficient)
Student-Newman-Keuls (SNK) test, 64n
Student’s t test, 49–51 

(See also t test, paired; t test, unpaired)
Study design, issues, 250
Suicide, 95
Sum of squares:

to define F, 194
and degrees of freedom, 192–193
between groups, 192–193
within groups, 192
about regression line, 167
total, 193–194
for treatment, 190–191
and variance, 190, 198–199
(See also Analysis of variance; Repeated-measures 

analysis of variance)
Surgery:

adhesions, 226
internal mammary artery litgation, 251
for treatment of lung cancer, 244

Survival curves:
compared with Gehan’s test, 242
compared with log rank test, 237–242
comparison of two, 235–237
estimating, 230–234
Kaplan-Meier product-limit estimate, 233
median survival time, 231, 234
proportional hazards, 237, 242
standard error for, 234–235, 235n
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Survival functions:
definition, 231
(See also Survival curves)

T
T (See Mann-Whitney rank sum test)
t distribution:

development, 51–56
and normal distribution, 132–133
one verus two-tails, 107

t statistic:
to compare two sample means (See t test, unpaired)
general definition, 56, 186
and intervals for difference of means, 125–126
meaning, 55
and normal distribution, 79, 132–133
table of critical values, to test for changes (See t test, 

paired)
t test:

analysis of variance, 59–60
assumptions, 205
to compare regression intercepts, 161
to compare regression lines, 160–161
to compare regression slopes, 160–161
effect of population variability, 101
effect of sample size, 101
Holm-Sidak test, 65–67
misuse, 60–62, 122–124
one-tail, table of critical values, 108–109
one versus two-tails, 107–108
paired:

assumptions, 205
common errors of use, 189
definition, 185
degrees of freedom, 187
examples, 187–189
purpose, 185, 189
and repeated-measures analysis of variance, 189
when to use, 249
(See also Wilcoxon signed-rank test)

power of function, 115
size of treatment effect, 101, 108–110
for slopes, 160–161
unpaired:

as analysis of variance, 59–60
to analyze experiments for data collected before and 

after treatment in same subjects, 185
assumptions, 49–50, 187, 205

definitions, 49, 185
degrees of freedom, 56, 187
differences within subjects, 187
effect of the sample size, 49–50, 54–56
examples, 56–59, 101–104
formula, 52, 260
general approach, 49–51
misuse, 60–62
most common procedure in medical literature, 49
for multiple comparisons, 62–67
nonparametric analog, 206
null hypothesis, 62
one-tail versus two-tailed, 55
power, 105, 112–113
samples drawn from different populations, 102–104
summary of procedure, 178
unequal sample sizes, 56–59
when to use, 249
(See also Mann-Whitney rank sum test)

Tables, statistical (See Critical values)
Test(s):

accuracy, 4
approximation, 23
of hypothesis (See Hypothesis test)
for normality (See Normal distribution)
purpose, 248–250

Test statistic:
chi-square, 81–84
definition, 78
F, 32–33
purpose, 32–33, 248–250
r, 171
t, 50, 57
(See also specific statistical tests)

Testosterone, 203
Ties:

and chi-square, 219n
and Friedman test, 223–224
and Kruskal-Wallis statistic, 219, 219n
and Mann-Whitney rank sum test, 209
and Spearman rank correlation coefficient, 170
and Wilcoxon signed-rank test, 216, 216n

Tolerance limit, 140n
(See also Confidence interval, for population)

Total sum of squares:
in analysis of variance, 193
in linear regression, 167

Treatment sum of squares, 190–191, 192–193
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Treatments:
definition, 190
in relative risk, 92

Trend (See Linear regression)
True negative, 105
True positive, 104–105
Two-tailed test:

critical values, table, 57–58
versus one tailed tests, 55, 107–108

Type I error:
and confidence intervals, 127, 130–132
definition, 104–105
ethical implications, 253
in medical literature, 122
notation contrasted with regression, 145n
and power, 105–107, 108
and Type II error, 105, 108

Type II error:
and confidence intervals, 127, 130
definition, 105
notation contrasted with regression, 145n
and power, 105–107, 108
and Type I error, 105, 108

U
U (See Mann-Whitney rank sum test)
Uncontrolled trials, 250

V
Variable transformation, 168
Variability of population, 7–10
Variance:

basis of all forms of analysis of variance, 189–190
effect of power, 112–113
estimated from sums of squares and degrees of 

freedom, 189–195

formula, 259
about line of means, 145–147
population, 9–10
about regression line, 150–151

Variance ratio (See F)

W
Wilcoxon signed-rank test:

continuity correction, 216
general approach, 213–215
normal approximation for large numbers,  

215–26
summary of procedure, 216–217
table of critical values, 216
ties, 216–217, 216n
when to use, 249

Within groups sum of squares, 192
Within-groups variance, 31

Y
Yates correction:

For chi-square, 84–86
for continuity, 79, 84, 202
for Gehan’s test, 242
for log rank test, 242 
and power, 119n
(See also Continuity correction)

Z
z (See Normal distribution)
z test:

to compare sample proportions, 78–79
continuity correction for, 79
examples, 80–81
power, 118–119
and two-tailed, critical values, 118–119
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